
A Lightweight Technique to Identify Equivalent Mutants

Beatriz Souza1 and Rohit Gheyi1

1 Departamento de Sistemas e Computação
Universidade Federal de Campina Grande (UFCG) – Campina Grande, PB – Brazil

{beatriz.souza@ccc.ufcg.edu.br,rohit@dsc.ufcg.edu.br}

Abstract. Mutation analysis is a popular but costly approach to assess the qua-
lity of test suites. Equivalent mutants are useless and contribute to increase
costs. We propose a lightweight technique to identify equivalent mutants by pro-
ving equivalences with Z3 in the context of weak mutation testing. To evaluate
our approach, we apply our technique for 40 mutation targets (mutations of an
expression or statement) and automatically identify 13 equivalent mutations for
seven mutation targets. We manually confirm that the equivalent mutants detec-
ted by our technique are indeed equivalent. Moreover, we evaluate our approach
in the context of strong mutation testing against mutants generated by MUJAVA
for 5 projects. Our technique detects all equivalent mutants detected by TCE.
The results of our technique can be useful to improve mutation testing tools by
avoiding the application of 13 mutations for 7 mutation targets.

1. Introduction
Mutation analysis is a powerful technique to assess quality of test sui-
tes [DeMillo et al. 1978, Offutt 2011, Papadakis et al. 2019]. The technique introduces
variations in code and checks if those variations are observable through test execution.
Applying a mutation to a program yields a mutant. A mutant is said to be killed if a test
case in the test suite fails on a given mutant; a mutant is said to survive otherwise. Just
et al. [Just et al. 2014] empirically identify a statistically significant correlation between
mutant detection and real fault detection.

The high cost of mutation testing creates an entry barrier to its use in the software
industry, but the effectiveness of mutation testing in assessing the quality of the test sui-
tes makes it attractive. Therefore, there is an incentive to carry out cost-saving studies
and alternative ways to use mutation, such as the approach used by Google, where only
one mutant per target is chosen by a software engineer manually during the code quality
inspection [Petrovic and Ivankovic 2018].

However, some mutants are equivalent and do not contribute to the test
assessment process because they have the same behavior as the original pro-
gram [Budd and Angluin 1982, Jia and Harman 2011, Madeyski et al. 2014]. So, these
mutants are useless [Fernandes et al. 2017]. Listing 1 illustrates one equivalent mu-
tant. The mutation operator applied introduces a post decrement to a local variable
(value--). Notice that this introduction does not change the behavior when com-
pared to the original program, since the decrement would happen after the function
returns and value is a local variable. In this sense, M1 is useless. Madeyski et
al. [Madeyski et al. 2014] report that the rate of equivalent mutants might lie between
4% and 39%. In addition, manually checking mutant equivalence is error-prone (people

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

225

judged equivalence correctly in about 80% of the cases [Acree 1980]) and time consu-
ming (approximately 15 minutes per equivalent mutant [Schuler and Zeller 2013]).

Listing 1. Original program and equivalent mutant.

/ / O r i g i n a l program − O
p u b l i c long f u n c t i o n (long v a l u e) {

re turn v a l u e ;
}

/ / E q u i v a l e n t Mutant − M1
p u b l i c long f u n c t i o n (long v a l u e) {

re turn va lue−−;
}

Weak mutation testing is a modification to mutation testing that is computationally
more efficient, and can be applied in a manner that is almost as effective as mutation
testing [Offutt and Lee 1994]. Weak mutation testing requires that a test case causes a
mutated program component to compute a different value than the program component.
Mutation testing, on the other hand, requires that a test case causes a mutated program to
compute a different value than the program [Offutt and Lee 1994].

We propose a lightweight technique consisting of four steps to discover
equivalent mutants using theorem proving in the context of weak mutation tes-
ting [Howden 1982]. We encode a theory of equivalence in Z3 and use its theorem
prover [de Moura and Bjørner 2008] to automatically identify equivalent mutants (Sec-
tion 2). Our technique is lightweight, we do not need to create mutants, compile them,
create test suites, and execute them, as previous works [Fernandes et al. 2017]. Our tech-
nique automatically identifies and prove 13 equivalences for seven mutation targets. Then,
we manually check and confirm that the equivalent mutants detected by our approach are
indeed equivalent.

Moreover, we investigate whether our results hold in the context of strong muta-
tion testing. To evaluate our approach, we apply MUJAVA [Ma et al. 2005], a tool that
generates mutants for programs written in Java, to 20 mutation targets in 5 real large pro-
jects. Then, we ran Trivial Compiler Equivalence (TCE) [Kintis et al. 2017], which is a
sound tool to find equivalent mutants, against the mutants generated by MUJAVA. Our
technique detects all equivalent mutants detected by TCE, but with less effort. We can
use our results to improve mutation testing tools. For example, our technique may be
useful to reduce costs of mutation testing by avoiding the application of 13 mutations for
7 mutation targets.

We organize this paper as follows. Section 2 describes our lightweight technique
to identify equivalent mutants using Z3. Section 3 presents the evaluation of our approach.
Finally, we relate our technique to others (Section 4), and present concluding remarks
(Section 5).

2. Technique
We propose a technique using the Z3 [de Moura and Bjørner 2008] API for Python, which
has a theorem prover, to identify equivalent mutants using weak mutation testing. For each

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

226

mutation target, the main steps of our approach are the following:

1. Declare variables;
2. Specify a program;
3. Specify a list of mutants;
4. Identify equivalent mutants.

A mutation target is a language expression or statement in which it is possible
to apply a set of mutations of one or more mutation operators (e.g., a + b, a > b,
exp++ etc) [Guimarães et al. 2020].

Steps 1 and 2 are required to instantiate a mutation target in the
Z3 [de Moura and Bjørner 2008] API for Python. In Step 3, we specify a list of muta-
tions for the instantiated target.

Listing 2. Proving a theorem in Z3.

def prove (theorem) :
s = S o l v e r ()
s . add (Not (theorem))
r = s . check ()
i f r == u n s a t :

re turn 1 # theorem i s v a l i d
e l i f r == unknown :

re turn 2 # Z3 doesn ’ t know t h e answer
e l s e :

re turn 0 # theorem i s i n v a l i d

We encode a theory in Z3 to detect equivalent mutants, in Step 4. We use the
latest version of Z3 after fixing the bugs found by Winterer et al. [Winterer et al. 2020].
Listing 2 specifies how to prove a theorem using the Z3 Python API. It can yield three
answers: the theorem is valid or invalid, or it does not know the answer. The command
Solver creates a general purpose solver in Z3 [de Moura and Bjørner 2008]. Cons-
traints can be added using the add function. The check method solves the constraints.
The result is sat (satisfiable) if a solution was found. The result is unsat (unsatisfia-
ble) if no solution exists. Finally, a solver may fail to solve a system of constraints and
unknown is returned. Z3 does not yield unknown in our study.

The identifyEquivalentMutants function presented in Listing 3 returns
equivalent mutants of a program.

Listing 3. Identifying equivalent mutants in Z3.

def i d e n t i f y E q u i v a l e n t M u t a n t s (p , muts) :
re turn [m f o r m in muts i f prove (p==m)==1]

The mutations created by MUJAVA are First Order Mutations (FOMs). We also
encode and prove equivalence among Higher Order Mutations (HOMs), which are created
by combining FOMs, using our approach. It is important to notice that the costs of crea-
ting HOMs are also high, since the large number of possible fault combinations creates a
set of candidate combinations that is exponentially large [Jia and Harman 2009].

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

227

2.1. Running Example
Next we show how to use our approach to identify some equivalence relations for the
lexp != rexp mutation target. For the integer expression lexp != rexp, we sim-
plify it to x != y and declare x and y as integer variables in the Z3 Python API (Step 1)
as shown in Listing 4. Then, in Step 2, we specify the program. In Step 3, we declare the
FOMs based on the method-level mutation operators available in MUJAVA. Moreover, we
declare the HOMs by combining the FOMs (See Listing 4).

Listing 4. Identify Equivalent Mutants for lexp != rexp target.

S tep 1
x = I n t (' x ')
y = I n t (' y ')

S t ep 2
p = x != y

S tep 3
muts = [x==y , x>y , x>=y , x<y , x<=y , True , F a l s e , Not (p) ,

Not (x==y) , Not (x>y) , Not (x>=y) , Not (x<y) ,
Not (x<=y) , F a l s e , True]

S tep 4
i d e n t i f y E q u i v a l e n t M u t a n t s (p , muts)

Notice that for the lexp != rexp mutation target, we can apply two muta-
tion operators, ROR and COI (see Table 1), and generate eight FOMs using MUJAVA:
ROR ==, ROR >, ROR >=, ROR <, ROR <=, ROR true, ROR false, and COI
!(!=). Moreover, combining ROR and COI we can generate seven HOMs: COI
ROR !(==), COI ROR !(>), COI ROR !(>=), COI ROR !(<), COI ROR
!(<=), COI ROR !(true), COI ROR !(false).

To identify all equivalent mutants in Step 4, we have to call the
identifyEquivalentMutants function passing p and muts as parameters. For
the lexp != rexp mutation target, our script indicates that the COI ROR !(==)
mutant is equivalent.

3. Evaluation
To evaluate our approach, we consider the following research questions:

RQ1 How many equivalent mutants does our approach detect using weak mutation tes-
ting?

RQ2 To what extent does our approach work in the context of strong mutation testing?

The artifacts used to answer these questions and the results that we obtained are
available in our Google Colaboratory notebook [Artifacts 2020].

3.1. RQ1: Number of Equivalent Mutants
We evaluate our technique in 40 mutation targets applying most MUJAVA method-level
mutation operators [Ma et al. 2005], such as operators that mutate arithmetic, relational,

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

228

and logical expressions, and variable assignment statements. We do not focus on the
object-oriented ones, i.e., the class-level mutation operators.

Table 1. It presents mutation targets, method-level mutations that each operator
is able to create in the corresponding target, the set of equivalent mutants
for each target identified in our approach, and the percentage of equivalent
mutants. The mutations in red are HOMs.

Mutation Target Mutation Operators Equivalent Mutants Percentage
lexp + rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp - rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp * rexp AORB (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp ˆ rexp (bool) COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) ROR(!=) 6.67%
lexp && rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp || rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp == rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp != rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) - 0.0%
lexp == rexp ROR (7), COI (1) - 0.0%
lexp != rexp ROR (7), COI (1) - 0.0%
lexp > rexp ROR (7), COI (1) - 0.0%
lexp >= rexp ROR (7), COI (1) - 0.0%
lexp < rexp ROR (7), COI (1) - 0.0%
lexp <= rexp ROR (7), COI (1) - 0.0%
lexp != rexp (obj) ROR (7), COI (1) - 0.0%
lexp & rexp LOR (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp | rexp LOR (2), VDL (2), CDL (2), ODL (2) - 0.0%
lexp ˆ rexp LOR (2), SOR (2), CDL (2), ODL (2) - 0.0%
lexp >> rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) - 0.0%
lexp << rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) - 0.0%
exp AOIS (4), AOIU (1), LOI (1) AOIS(exp–), AOIS(exp++) 33.33%
+exp AODU (1), LOI (1), ODL (1) AODU(exp), ODL(exp) 66.67%
-exp AODU (1), LOI (1), ODL (1) - 0.0%
++exp AORS (1), AODS (1), LOI (1), ODL (1) - 0.0%
exp++ AORS (1), AODS (1), LOI (1), ODL (1) AORS(exp), AODS(exp), ODL(exp) 75%
--exp AORS (1), AODS (1), LOI (1), ODL (1) - 0.0%
exp-- AORS (1), AODS (1), LOI (1), ODL (1) AORS(exp), AODS(exp), ODL(exp) 75%
!exp COD (1), ODL (1) - 0.0%
˜exp AODU (1), LOD (1), ODL (1) - 0.0%
lhs += rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs -= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs *= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs <<= rhs ASRS (1), ODL (1), SDL (1) - 0.0%
lhs >>= rhs ASRS (1), ODL (1), SDL (1) - 0.0%
lhs &= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs |= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lhs ˆ= rhs ASRS (2), ODL (1), SDL (1) - 0.0%
lexp == rexp ROR (7), COI (1), ROR COI (7) COI ROR !(!=) 6.67%
lexp != rexp ROR (7), COI (1), COI ROR (7) COI ROR !(==) 6.67%
++exp ROR (7), COI (1), COI ROR (7) - 0.0%

Table 1 presents a number of method-level mutation targets in which MUJAVA is
able to apply a set of mutations from one or more mutation operators. Accordingly, for
each target, we specify the set of corresponding mutation operators able to apply muta-
tions into the target [Guimarães et al. 2020]. For each operator, we provide the number
of possible mutations (in parentheses) that such operator can apply into the target. For
example, the Logical Operator Replacement (LOR) operator can apply two mutations to
the lexp | rexp target. Table 2 describes the mutation operators considered in our
work [Ma and Offutt].

For the 40 mutation targets presented in Table 1, our technique found equivalent
mutants for seven of them. We find 13 mutations that yield equivalent mutants in total
(see Table 1). Eleven of the equivalent mutants found are FOMs. For the mutation tar-
gets exp++ and exp--, our approach classified the following mutations as equivalent:

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

229

AORS(exp), AODS(exp), and ODL(exp). We encoded HOMs for three mutation
targets. We found two equivalent mutants which are HOMs. For the lexp == rexp
mutation target the COI ROR !(!=) mutation always yield equivalent mutants, and for
the lexp != rexp mutation target the COI ROR !(==) mutation is equivalent. We
manually analyze whether the equivalent mutants detected by our technique are indeed
equivalent. We do not find false positives.

Table 2. Description of mutation operators.

Operator Description
AORB Binary Arithmetic Operator Replacement
AORS Short-Cut Arithmetic Operator Replacement
AOIU Unary Arithmetic Operator Insertion
AOIS Short-Cut Arithmetic Operator Insertion
AODU Unary Arithmetic Operator Deletion
AODS Short-Cut Arithmetic Operator Deletion
ROR Relational Operator Replacement
COR Conditional Operator Replacement
COI Conditional Operator Insertion
COD Conditional Operator Deletion
SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Delete
ASRS Short-Cut Assignment Operator Replacement
SDL Statement DeLetion
VDL Variable DeLetion
CDL Constant DeLetion
ODL Operator DeLetion

3.2. RQ2: Strong Mutation Testing

In this section, our goal is to check whether our results hold in the context of strong
mutation testing. We use TCE [Kintis et al. 2017], which is a sound tool that applies
compiler optimizations and checks the bytecode of the original program and the mutant to
find equivalence. A human-based equivalence verification reveals that TCE has the ability
to detect approximately 30% of all the existing equivalent mutants [Kintis et al. 2017].
TCE is one of the best static analysis tools to detect some types of equivalent mutants.

We apply MUJAVA to 5 real projects, and generate mutants for 20 mutation targets.
MUJAVA generates 5,297 mutants. Table 3 illustrates the studied programs, i.e., joda-
time, commons-math, commons-lang, h2, and javassist. These programs vary in size and
application domain. joda-time is a time manipulation library. commons-math is a library
of mathematics and statistics components. commons-lang is a package of Java utility
classes for the classes that are in java.lang’s hierarchy. h2 is a Java SQL-based database.
javassist is class library for editing bytecodes. Table 3 also presents the amount of mutants
created by MUJAVA for each program.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

230

Table 3. Five programs used in our evaluation.

Project Version LOC MUJAVA

joda-time 2.10.1 28,790 2,652
commons-math 3.6.1 100,364 651
commons-lang 3.6 27,267 1,126
h2 1.4.199 134,234 210
javassist 3.20 35,249 658

We executed TCE against the 5,297 mutants generated by MUJAVA. TCE found
406 equivalent mutants in total. All of them created by the AOIS exp-- and AOIS
exp++ mutations of the exp mutation target. In our approach using weak mutation
testing, we also find the same equivalent mutants for the expmutation target (see Table 1).

For the following 19 mutation targets, neither TCE nor our approach find
any equivalent mutants: lexp + rexp, lexp - rexp, lexp * rexp, lexp
&& rexp, lexp || rexp, lexp == rexp (bool), lexp != rexp (bool),
lexp == rexp, lexp != rexp, lexp > rexp, lexp >= rexp, lexp <
rexp, lexp <= rexp, lexp != rexp (obj), lexp & rexp, lexp | rexp,
lexp ˆ rexp, lexp << rexp, --exp.

MUJAVA does not generate HOMs. So, it does not generate the equivalent mu-
tants using the HOMs COI ROR !(==) and COI ROR !(!=) for the mutation tar-
gets lexp == rexp and lexp != rexp. We also tried to evaluate our approach to
more mutation targets, such as exp++. However, MUJAVA did not generate mutants for
them. This way, we did not detect equivalent mutants for the following mutation tar-
gets with TCE, as we did with our approach (see Table 1): +exp, exp++, exp--. In
summary, all mutants detected by TCE are also detected by our technique.

4. Related Work
Addressing the equivalent mutant is not a recent problem [Jia and Harman 2011]. Pre-
vious studies have been addressing this problem and surveys on this topic have been
published [Jia and Harman 2011, Madeyski et al. 2014, Pizzoleto et al. 2019]. Budd and
Angluin [Budd and Angluin 1982] show that detecting an equivalent mutant is an undeci-
dable problem. In our work, we show that for some mutation operators, Z3 automatically
proves a theorem and yields an answer.

To tackle the mutation equivalent problem, some studies used compiler optimiza-
tions [Baldwin and Sayward 1979]. The intuition is that code optimization can transform
the original program and the mutant in a way which their compiled object codes will
be identical. Kintis et al. [Kintis et al. 2017] propose the Trivial Compiler Equivalence
(TCE) and used this idea in popular languages (C and Java) and mutation tools (MILU and
MUJAVA). Using this strategy, the original program and the mutant need to be compiled,
and some equivalent mutants cannot be detected.

Kintis and Malevris [Kintis and Malevris 2015] use static analysis to avoid some
equivalent mutants by introducing data-flow patterns. They indicate that a number of
equivalent mutants can be avoided by just analyzing the original program under test.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

231

Offutt and Pan [Offutt and Pan 1997] use constraint solvers to detect equivalent mu-
tants and infeasible paths automatically. Harman et al. [Harman et al. 2001] use the
program slicing technique to assist in the detection of equivalent mutants. Fernan-
des et al. [Fernandes et al. 2017] propose a strategy to help with identifying rules to
avoid equivalent mutants. Shuller and Zeller [Schuler and Zeller 2013] and Grun et
al. [Grün et al. 2009] indicate that changes in coverage can be used to detect non-
equivalent mutants. In our work, we use the Z3 theorem prover to detect equivalent
mutants.

5. Conclusion
In this work, we propose a lightweight technique to detect equivalent mutants using Z3.
Developers only need to specify the types and mutations in our encoding to identify equi-
valent mutants (see Listing 4). We do not need to create mutants, compile them, create
test suites, and execute them, as previous works [Fernandes et al. 2017]. We apply our
approach to 40 method-level mutation targets where MUJAVA [Ma et al. 2005], can apply
mutations. We also prove equivalence among Higher Order Mutations (HOMs), by com-
bining the FOMs created by MUJAVA. Our technique automatically identifies and prove
13 equivalences for seven mutation targets. Then, we manually check and confirm that
the equivalent mutants detected by our approach are indeed equivalent. Moreover, to eva-
luate our approach in the context of strong mutation testing, we compare our approach to
(TCE) [Kintis et al. 2017]. To perform the comparison, we apply MUJAVA to 20 mutation
targets in 5 real large projects. Then, we execute TCE against the mutants generated by
MUJAVA. Our technique detects all equivalent mutants detected by TCE, but with less
effort.

Our approach may be useful to reduce costs of mutation testing. We recommend
developers to avoid generating mutants for some mutation operators applied to mutation
targets presented in Table 1. In this way, developers will avoid generating mutants, com-
piling them, and then running TCE to detect equivalent mutants. Moreover, TCE can
only identify equivalent mutants that have the same bytecode. However, there are cases
in which we may have equivalent mutants that have different bytecodes, and TCE will not
be able to detect [Fernandes et al. 2017].

As future work, we intend to identify more equivalent mutants by encoding more
FOMs and HOMs. We also aim at improving our technique to detect equivalent mutants
created by other mutation operators (i.e. class-level mutation operators), by proving more
complex assertions. Finally, we also intend to extend MUJAVA to avoid generating the
equivalent mutants detected by our technique.

Note: The first author helped to encode and prove equivalent mutants for some FOMs
and all HOMs. Moreover, she also conducted the evaluation by applying MUJAVA to 5
projects to evaluate our approach in the context of strong mutation testing.

Acknowledgments
We thank the anonymous reviewers for their valuable comments. This work was partially
supported by CNPq and CAPES grants.

References
Acree, J. A. T. (1980). On mutation. PhD thesis, Georgia Institute of Technology.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

232

Artifacts (2020). A technique to identify equivalent mutants. At https:
//colab.research.google.com/drive/1ts_2m0tW0GLWsVJ_
qhC59V9l8rVPdtsa?usp=sharing.

Baldwin, D. and Sayward, F. (1979). Heuristics for determining equivalence of program
mutations. Technical report, DTIC Document.

Budd, T. and Angluin, D. (1982). Two notions of correctness and their relation to testing.
Acta Informatica, 18(1):31–45.

de Moura, L. M. and Bjørner, N. (2008). Z3: an efficient SMT solver. In Proceedings of
the Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41.

Fernandes, L., Ribeiro, M., Carvalho, L., Gheyi, R., Mongiovi, M., Santos, A., Caval-
canti, A., Ferrari, F., and Maldonado, J. C. (2017). Avoiding useless mutants. In
Proceedings of the Generative Programming: Concepts & Experiences, pages 187–
198.

Grün, B. J., Schuler, D., and Zeller, A. (2009). The impact of equivalent mutants. In
Proceedings of the International Conference on Software Testing, Verification, and
Validation Workshops, pages 192–199.

Guimarães, M., Fernandes, L., Ribeiro, M., d’Amorim, M., and Gheyi, R. (2020). Op-
timizing mutation testing by discovering dynamic mutant subsumption relations. In
Proceedings of the International Conference on Software Testing, Verification and Va-
lidation, page To appear. IEEE.

Harman, M., Hierons, R., and Danicic, S. (2001). The relationship between program
dependence and mutation analysis. In Proceedings of the Mutation Testing for the New
Century, pages 5–13.

Howden, W. (1982). Weak mutation testing and completeness of test sets. Transactions
on Software Engineering, 8(4):371–379.

Jia, Y. and Harman, M. (2009). Higher order mutation testing. Information and Software
Technology, 51(10):1379 – 1393.

Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation
testing. Transactions on Software Engineering, 37(5):649–678.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G. (2014). Are
mutants a valid substitute for real faults in software testing? In Proceedings of the
Foundations of Software Engineering, pages 654–665.

Kintis, M. and Malevris, N. (2015). MEDIC: A static analysis framework for equivalent
mutant identification. Information and Software Technology, 68:1–17.

Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Traon, Y. L., and Harman, M. (2017). De-
tecting trivial mutant equivalences via compiler optimisations. Transactions on Soft-
ware Engineering, 44(4):308–333.

Ma, Y.-S. and Offutt, J. Description of MuJava’s method-level mutation operators. At
https://cs.gmu.edu/˜offutt/mujava/mutopsMethod.pdf.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

233

https://colab.research.google.com/drive/1ts_2m0tW0GLWsVJ_qhC59V9l8rVPdtsa?usp=sharing
https://colab.research.google.com/drive/1ts_2m0tW0GLWsVJ_qhC59V9l8rVPdtsa?usp=sharing
https://colab.research.google.com/drive/1ts_2m0tW0GLWsVJ_qhC59V9l8rVPdtsa?usp=sharing
https://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

Ma, Y.-S., Offutt, J., and Kwon, Y.-R. (2005). MuJava: an automated class mutation
system. Software Testing, Verification and Reliability, 15(2):97–133.

Madeyski, L., Orzeszyna, W., Torkar, R., and Jozala, M. (2014). Overcoming the equiva-
lent mutant problem: A systematic literature review and a comparative experiment of
second order mutation. Transactions on Software Engineering, 40(1):23–42.

Offutt, A. J. and Lee, S. D. (1994). An empirical evaluation of weak mutation. Transac-
tions on Software Engineering, 20(5):337–344.

Offutt, J. (2011). A mutation carol: Past, present and future. Information and Software
Technology, 53(10):1098 – 1107.

Offutt, J. and Pan, J. (1997). Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification and Reliability, 7(3):165–192.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L., and Harman, M. (2019). Chap-
ter six - mutation testing advances: An analysis and survey. Advances in Computers,
112:275–378.

Petrovic, G. and Ivankovic, M. (2018). State of mutation testing at google. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP), pages 163–171.

Pizzoleto, A., Ferrari, F., Offutt, J., Fernandes, L., and Ribeiro, M. (2019). A systema-
tic literature review of techniques and metrics to reduce the cost of mutation testing.
Journal of Systems and Software, 157.

Schuler, D. and Zeller, A. (2013). Covering and uncovering equivalent mutants. Software
Testing, Verification and Reliability, 23(5):353–374.

Winterer, D., Zhang, C., and Su, Z. (2020). Validating SMT solvers via semantic fusion.
In Proceedings of the Programming Language Design and Implementation, pages 718–
730.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

234

	Introduction
	Technique
	Running Example

	Evaluation
	RQ1: Number of Equivalent Mutants
	RQ2: Strong Mutation Testing

	Related Work
	Conclusion

