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ABSTRACT
Recently, an increasingly large amount of effort has been devoted
to implementing tools to generate unit test suites automatically.
Previous studies have investigated the effectiveness of these tools
by comparing automatically generated test suites (ATSs) to man-
ually written test suites (MTSs). Most of these studies report that
ATSs can achieve higher code coverage, or even mutation coverage,
than MTSs, particularly when suites are generated from defective
code. However, these studies usually consider a limited amount of
classes or subject programs, while the adoption of such tools in the
industry is still low. This work aims to compare the effectiveness of
ATSs and MTSs when applied as regression test suites. We conduct
an empirical study, using ten programs (1368 classes), written in
Java, that already have MTSs and apply two sophisticated tools that
automatically generate test cases: Randoop and EvoSuite. To evalu-
ate the test suites’ effectiveness, we use line and mutation coverage.
Our results indicate that MTSs are, in general, more effective than
ATSs regarding the investigated metrics. Moreover, the number
of generated test cases may not indicate test suites’ effectiveness.
Furthermore, there are situations when ATSs are more effective,
and even when ATSs and MTSs can be complementary.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Software testing is staple in any software development process [44]
because it helps in identifying the presence of faults [19, 44, 45].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422407

However, writing good tests, particularly unit tests, is often consid-
ered difficult [19, 37], tedious [45], and time-consuming [44]. For
instance, a field study with software engineers presented by Beller
et al. [20] shows that half of the developers do not test in their
IDEs. Also, approaches such as Test-Driven Development (TDD),
which highly depend on writing test cases, have not been largely
practiced.

Tools and techniques for automatic generation of unit test cases
have been proposed to support developers in unit testing [15, 44],
particularly, following a white-box strategy where the code under
test is analyzed to select inputs and capture observable behavior in
assertions. Evosuite [25] and Randoop [41] are examples of such
tools. While Evosuite implements a search-based generation tech-
nique, Randoop implements a feedback-directed random technique.
Both tools have been part of most of the editions of the Java Unit
Testing Tool Competition, with Evosuite often ranking first, even
though they have achieved a comparable performance in the 2019
edition [36]. On the one hand, generation tools can be appealing, as
they promise to produce satisfactory test cases in a short time with
minimal effort [19]. On the other hand, the industry’s adoption of
such tools is still low [13, 28, 44].

To evaluate the effectiveness of the test suites generated by the
different unit test generation techniques, we can take some metrics
into account. Test suite quality is frequently measured based on
the amount of code covered and on the fault detection ability of
the test suite [38].

Previous studies investigated the effectiveness of manually writ-
ten test suites (MTSs) against automatically generated test suites
(ATSs). Most of these studies report that ATSs can achieve higher
code coverage [19, 28, 44], or even mutation coverage [19, 44], than
MTSs. Moreover, studies indicate that ATSs are still limited to de-
tect faults [13, 44]. Other studies suggest that ATSs and MTSs may
detect different faults [43, 48]. However, these studies only used
a limited amount of classes or subject programs to conduct their
analysis. Since both MTSs and ATSs face challenges to adoption in
the industry, we need further investigation to identify their current
limitations and contributions to the unit testing practice.

In this work, we empirically evaluate MTSs and ATSs using ten
open source projects from Apache Commons [5] (with a total of
1368 classes). We apply two state-of-the-art unit test generation
tools for Java, Randoop and EvoSuite, and investigate the test suites
in terms of line coverage and strong mutation coverage with mu-
tants generated by the PITest tool [22]. On top of that, we also
explore the non-determinism of the tools and whether there is a
correlation between the test suite size and the ability of test suites to
detect faults. It is important to remark that we focus on regression
test cases only. Thus, we generate ATSs from the clean program
and consider only test cases that pass on the clean program. While
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this choice might raise the Clean Program Assumption problem
[21], it can prevent that mutations get encoded in the assertions
[32].

Therefore, the main contributions of this paper are as follows:

• A large-scale study, applying two state-of-the-art automated
unit test generators for Java to ten open source projects with
MTSs;

• A detailed analysis of how non-deterministic the ATSs are;
• A detailed comparison between the effectiveness of the test
suites generated with the different unit test generation tech-
niques.

We organize this article as follows. We explain the test genera-
tion techniques in Section 2. Section 3 describes the approach to
conduct our study. Section 4 presents and discusses the results of
our study. In Section 5, we present possible threats to validity and
limitations. Finally, we relate our work to others (Section 6) and
present concluding remarks (Section 7).

2 TEST CASE GENERATION
This section briefly discusses the approaches of manually writ-
ing and automatically generating test suites and also describe the
Randoop and EvoSuite tools.

2.1 Manually Writing Test Cases
Test suites are most often writtenmanually, either by the developers
themselves or through a quality assurance team [38]. Writing good
tests, particularly unit tests, can be challenging [37, 44]. Currently,
there is no formal method to help standardize the test writing prac-
tice [19, 31, 37, 38]. However, there are some widely-accepted best
practices such as boundary-value analysis, data structures analysis,
control-flow path execution, error management paths execution
(i.e. exception handling checking), mock objects, and environments
generation [19, 37]. Additionally, anti-patterns, named test smells,
have been investigated [29]. In general, the methods and styles
of writing individual tests, the fulfillment of coverage and fault-
finding goals, and the ordering of test suites are left to industry
requirements or personal preference [38].

2.2 Automatically Generating Test Cases
Due to the high cost and inconsistencies introduced when develop-
ing test suites by hand, automatic test suite generation research is
on the rise [38]. To support developers in unit testing, researchers
have explored different approaches to generate unit tests automati-
cally, thus relieving the developers of part of their hard work [45].

There are many automatic test case generation tools available,
which can be classified into two categories: Deterministic and
Learning-Based [38]. Deterministic automatic test case generators
normally analyze method parameters and basic paths to create unit
tests. Tools such as JUnitDoclet [10], CoView [1], and CodePro [6],
are classified as deterministic. Learning-Based automatic test case
generation tools, on the other hand, use learning algorithms to
improve the overall quality of the generated test suites. The two
top-ranked tools in this area are Randoop [4] and EvoSuite [2] [38],
which are the tools that we empirically study in this paper.

2.2.1 Randoop. A unit test generator for Java [4, 41] that automat-
ically creates JUnit tests for classes. Randoop generates tests using
the feedback-directed random test technique, which is a pseudo-
random technique that create sequences of invocations of methods
for the class under test. To create assertions, the tool executes the
sequences and capture the behavior from the results. The tool can
be applied to find defects in the class under test, but also to create
regression test suites.

Effectiveness of Randoop has been confirmed through empiri-
cal studies. For instance, the tool uncovered unknown defects in
widely-used libraries, such as Sun’s and IBM’s JDKs and a core .NET
component. Also, it has been used in industry, for example, at ABB
corporation [4]

2.2.2 EvoSuite. A search-based tool [26] that uses a genetic algo-
rithm to generate test suites for Java classes automatically [2, 25].
For each class, the tool automatically produces a JUnit Test Suite
by maximizing coverage. As input the tool receives the name of the
class under test and its full classpath (where the bytecode of the
class and its dependencies can be found).

EvoSuite can be used from the command line and through plugins
for common software development infrastructure in industrial Java
projects [17] such as IntelliJ IDEA [8], Jenkins CI [9], or Maven [12].

The effectiveness of EvoSuite has been evaluated on open source
as well as industrial software in terms of code coverage, fault de-
tection effectiveness, and effects on developer productivity [27].
In the first two, the fourth and fifth editions of the unit testing
tool competition at the International Workshop on Search-Based
Software Testing (SBST), EvoSuite ranked first, for achieving the
highest overall score among the competing unit test generation
tools [27].

3 EMPIRICAL STUDY SETUP
The unit testing practice still demands effective ways of generat-
ing test suites that, among other desirable features, are capable of
detecting as many faults as possible. On the one hand, MTSs are
more common in practice despite the costs and challenges to build
them. On the other hand, ATSs are less costly to produce but so
far have achieved low adoption, mainly due to current limitations.
These bring us to our focus question: how effective are MTSs and
ATSs to cover code and detect faults?

This section describes an empirical study that investigates this
question. In the sequel, we present the detailed research questions,
the subject programs, the metrics, the mutation testing tool and
mutation operators, and an overview of the experimental procedure.

3.1 Research Questions
The following questions guide this study:

RQ1: Hownon-deterministic are the test case generation tools?
RQ2: Which test suite is more effective in terms of line cover-

age?
RQ3: Which test suite is more effective in terms of strong

mutation coverage?
RQ4: Which test suite is more effective in terms of detecting

certain mutations?
RQ5: Is there a correlation between the quantity of test cases

in a test suite and its capability of mutant detection?
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3.2 Subject Programs
We selected the programs to compose our experiment based on the
following requirements:

(1) The project is built with Maven [12];
(2) The project has a manually written test suite;
(3) It is possible to generate test cases for the project using both

Randoop [4] and EvoSuite [2];
(4) It is possible to generatemutants of the project using PITest [3].
We evaluated the above requirements for all 43 projects from

the Apache Commons repository [5]. The 10 projects that suit the
requirements are described in Table 1.

Table 1: Subject programs used in our study.

Project Version # of Classes LOC
BCEL 6.3 426 30812
CLI 1.4 25 2790
Codec 1.12 86 8325
CSV 1.6 14 1742
Email 1.5 21 2815

FileUpload 1.4 47 2425
Imaging 1.0 403 32607
Lang 3.8.1 238 27646

Statistics 1.0 35 2665
Validator 1.6 73 7409
Total — 1368 119236

3.3 Evaluation Metrics
One of the key challenges of developers when testing code is de-
termining a test suite’s quality [30]. The most popular method to
predict fault detection capability based only on the test suite itself
and the current version of the software under test is the use of code
coverage criteria [14]. Code coverage describes structural aspects
of the executions of a software under test performed by a test suite.
For example, statement coverage indicates which statements in a
program’s source code were executed, branch coverage indicates
which branches were taken, and path coverage describes the paths
explored in a program’s control flow graph [30].

Mutation analysis is another popular technique to assess the
quality of test suites [24, 33]. The idea behind mutation testing is
that small syntactic changes are inserted in the original program
by applying mutation operators to create faulty programs called
mutants. Mutants caught by a test suite are said to be killed. The
intuition is that a test suite that kills more mutants is adequate to
detect defects when they occur [35].

In this paper, we evaluate the test suites in terms of line coverage
and strong mutation coverage.

3.4 Mutation Testing: Tool and Operators
We use PITest [3, 22], a mutation testing tool for Java, to conduct
our study. PITest is considerably fast as it manipulates bytecode
and runs only the tests that have chances to kill the used mutants
(i.e., the tests that execute the instruction where the mutant is
located). PITest’s major advantage is that it is robust, easy to use,
and well-integrated with development tools [22]. PITest has a set of
mutation operators available. By default, there are seven mutation

Figure 1: Overview of the experimental procedure.

operators enabled (See Table 2). These operators are designed to
generate hard to kill mutants, and generating a minimal amount of
equivalent mutants [16]. In our study, we use the seven mutation
operators enabled by default in PITest.

3.5 Experiment Procedure
Figure 1 presents an overview of our study procedure. For each
project in Table 1, we generated 10 test suites with Randoop [4]
(version 4.1.1) and 10 test suites with Evosuite [2] (version 1.0.6),
using their default configuration, except for the following argument
changes: Evosuite’s separateClassLoader = false to avoid con-
flicts with PITest’s bytecode instrumentations; Randoop’s flaky-
test-behavior = DISCARD to remove flaky tests, which are tests
that can intermittently pass or fail even for the same code ver-
sion [39]. We also changed Randoop’s randomseed in every execu-
tion, using integers generated by a pseudo random integer genera-
tor, to produce different test suites, as Randoop is deterministic by
default [4].

The complete ATSs, and also the MTSs present in the projects,
have tests that fail in the production code version considered in
the study. Since our study focus on regression test suites as well as
this is also a requirement of PITest, we manually removed all the
failing tests from all the test suites.

To ensure that we had reliable tests, we ran PITest (version 1.4.5),
which is deterministic, for each regression test suite, 10 times to
look for flaky tests. We could only observe negligible differences
for the ATSs and a slight difference for the MTS of Statistics and
the fourth test suite generated by EvoSuite for the CLI project.
According to our analysis, this difference has not impacted general
conclusions reported for the MTSs compared to the ATSs. In any
case, we used the mean of the 10 executions of PITest’s outputs,
including line coverage, to answer from RQ2 onward.

4 EMPIRICAL STUDY: RESULTS AND
ANALYSIS

In this section, we present the answer to each research question,
in turn, indicating how the results answer each. Furthermore, we
discuss the results focusing on examples collected from data. All
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Table 2: PITest’s mutation operators enabled by default.

Operator Description Example
Conditionals Boundary Replaces one relational operator instance with another operation < → ≤
Increments Replaces increments with decrements and vice versa ++ → −−
Invert Negatives Removes the negative from a variable −𝑎 → 𝑎

Math Replaces binary arithmetic operations with another operation + → −
Negate Conditionals Negates one relational operator == → ! =
Return Values Replaces the return values of method calls return 0 → return 1
Void Method Calls Removes method calls to void methods void m() →

Table 3: Standard deviation of the line coverages achieved by
ten test suites generated by Randoop and EvoSuite for each
subject program.

Project Randoop EvoSuite
BCEL 0.054268 0.038281
CLI 0.073278 0.052409
Codec 0.006871 0.011868
CSV 0.018792 0.047030
Email 0.015281 0.033940

FileUpload 0.006565 0.050808
Imaging 0.022082 0.087673
Lang 0.033009 0.033074

Statistics 0.064588 0.033372
Validator 0.022523 0.045844

data from our study, the statistical analysis, and reproducibility
instructions can be found in our notebook [46].

4.1 RQ1: Tools Non-Determinism
To investigate the non-determinism in the generation techniques of
Randoop and Evosuite, we calculate the mean, median, and standard
deviation of the line coverage and mutation coverage, considering
one execution of PITest for each test suite, of the ten test suites by
each project. Tables 3 and 4 show the computed standard deviations.
We have that, for line coverage, the test suites generated by EvoSuite
have a greater standard deviation than those test suites generated
by Randoop for seven out of the ten subject programs. The three
projects whose test suites generated by Randoop have a greater
standard deviation than those generated by EvoSuite, in terms of
line coverage, are BCEL, CLI, and Statistics (values are highlighted in
Table 3). Moreover, for mutation coverage, the test suites generated
by EvoSuite have a greater standard deviation than those generated
by Randoop for eight out of the ten subject programs. The two
subject programs whose test suites generated by Randoop have
a greater standard deviation than those generated by EvoSuite,
in terms of mutation coverage, are Lang and Statistics (values are
highlighted in Table 4).

RQ1: Both tools generate test suites for each project with differ-
ent line and mutation coverage. EvoSuite tends to show more
non-deterministic behavior than Randoop.

4.2 RQ2: Line Coverage
Figure 2 presents the line coverages achieved by ATSs generated
by Randoop, EvoSuite, and MTSs. We compared them using the

Table 4: Standard deviation of the mutation coverages
achieved by ten test suites generated by Randoop and Evo-
Suite for each subject program.

Project Randoop EvoSuite
BCEL 0.029402 0.031350
CLI 0.047546 0.144000
Codec 0.017999 0.045306
CSV 0.025489 0.065018
Email 0.011073 0.038507

FileUpload 0.006270 0.054695
Imaging 0.011942 0.073979
Lang 0.032860 0.028388

Statistics 0.098861 0.018868
Validator 0.010764 0.052549

Wilcoxon test, and we found that, with 95% confidence, the MTSs
achieve greater line coverage than the ATSs (p-value = 0.000976).
However, we did not find a statistically significant difference be-
tween the line coverages achieved by the test suites generated by
Randoop and EvoSuite, with 95% confidence (p-value = 0.3477).

Figure 2: Line Coverages achieved by the ATSs generated by
Randoop, EvoSuite, and MTSs.

Figure 3 shows the line coverages obtained by all ATSs generated
by EvoSuite and Randoop for each of the projects. EvoSuite is more
effective in six out of 10 projects with no overlaps between the boxes,
whereas Randoop is more effective in three of them. Moreover, the
CSV and Email projects are the most challenging ones for EvoSuite
when compared to Randoop, whereas the Imaging and CLI projects
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are the most challenging ones to Randoop. Despite all of the recent
efforts to improve the test case generation techniques implemented
by the tools, the classes in these projects may present constructions
that are still hard to explore [13].

RQ2: MTSs achieve better line coverage. There is no statisti-
cal difference between the ATSs generated by Randoop and
EvoSuite.

4.3 RQ3: Mutation Coverage
Figure 4 presents the mutation coverages achieved by ATSs gener-
ated by Randoop, EvoSuite, and MTSs. We compared the mutation
coverages achieved by the test suites using the Wilcoxon test, and
we found that, with 95% confidence, the MTSs achieve greater mu-
tation coverage than the ATSs (p-value = 0.000976). Moreover, we
found that, with 95% confidence, test suites generated by EvoSuite
achieve higher mutation coverage than those generated by Randoop
(p-value = 0.00293).

Figure 5 shows the mutation coverage obtained by all ATSs
generated by EvoSuite and Randoop for each of the projects. We
can see that EvoSuite is more effective in five out of 10 projects with
no overlaps between the boxes, whereas Randoop is more effective
in three of them. Moreover, the CSV and Email projects are still the
most challenging ones for EvoSuite when compared to Randoop,
but the difference is not as high as when considering line coverage.
Furthermore, for the Validator project, EvoSuite presents a lower
mutation coverage, whereas EvoSuite’s line coverage surpasses
Randoop. These facts can be explained by whether key assertions
are present in test cases: code coverage is not always correlated
with fault detection capability [21, 28].

RQ3: MTSs achieve better mutation coverage, followed by the
ATSs generated by EvoSuite.

4.4 RQ4: Mutation Operator Coverage
Figure 6 shows the coverages achieved by the test suites, generated
with the different test generation techniques, for each mutation op-
erator applied. For each operator, we compared, using theWilcoxon
test, the coverages achieved by the test suites. We found that, with
95% confidence, the MTSs are more effective than those generated
by Randoop and EvoSuite in detecting six out of the seven muta-
tion types applied (p-value < 0.05). We only found that there is no
difference statistically significant between the MTSs and the ATSs
in detecting the Invert Negatives mutation (p-value > 0.05). It is
important to remark that PITest could only apply this operator in
three projects: Lang, Imaging and Statistics. Together, these projects
account for 676 of the 1368 classes considered in the study.

Using the Wilcoxon test with 95% confidence, we found that test
suites generated by EvoSuite are more effective than those gener-
ated by Randoop in detecting three mutation types (p-value < 0.05):
Conditionals Boundary, Negate Conditionals, and Math. Moreover,
we found that there is no statistically significant difference between
the test suites generated by EvoSuite and Randoop in detecting the
other four mutation types applied (p-value > 0.05): Return Values,
Void Method Calls, Increments, and Invert Negatives.

RQ4: Except for the Invert Negatives operator, MTSs are more
effective than ATSs when considering individual mutation op-
erators. EvoSuite ATSs are more effective than Randoop ones
when considering the Conditionals Boundary, Negate Condi-
tionals, and Math operators.

4.5 RQ5: Test Suite Size and Mutation Coverage
Figure 7 presents the correlations that we found between the num-
ber of test cases and the mutation coverage achieved by the test
suites. We used the Spearman rank correlation coefficient to verify
whether there is a correlation between the number of test cases
and the mutation coverage of each test suite. Table 5 presents the
correlation coefficients (𝜌) computed. There is a large (𝜌 is over 0.5)
and very large (𝜌 is over 0.7) positive correlation between MTSs’
size and mutation coverage and between size and line coverage,
respectively. Moreover, there is a small (𝜌 is over 0.1) positive cor-
relation between EvoSuite ATSs size and mutation coverage and
between size and line coverage. However, no correlation can be
found for Randoop ATSs since the p-value obtained is over 0.05. In
this case, the correlation coefficient has no statistical significance.

Mutation Line Coverage
p-value Spearmen 𝜌 p-value Spearmen 𝜌

EvoSuite 0.02955 0.2177306 0.0374 0.2084624
Randoop 0.5403 -0.6195054 0.9788 -0.002691374
Manual 0.0288 0.6848485 0.0158 0.7333333

Table 5: Spearman correlation value (𝜌) between test suite
size and mutation score, and between test suite size and line
coverage.

Table 6 presents the total number of test cases of the test suites
for each program. The test suites generated by Randoop have the
largest number of test cases, whereas the MTSs have the smallest
amount of test cases. These numbers may explain the correlations
found. The size of the test suite does not necessarily imply effec-
tiveness. As MTSs’ sizes have relevant positive correlations with
their effectiveness, each test case may add considerable value to
the test suite, whereas ATSs’ test cases tend to be more redundant.

Table 6: Test suites’ size (number of test cases) generated for
each project by each unit test generation technique.

Project Randoop EvoSuite Manual
BCEL 5023 3435 118
CLI 257 455 409
Codec 3200 1254 901
CSV 2209 102 321
Email 3211 134 190

FileUpload 3676 332 82
Imaging 2444 3501 91
Lang 2328 3101 4118

Statistics 2331 749 386
Validator 2716 1092 536
Total 27399 14159 7152
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Figure 3: Line Coverage variation from 10 ATSs generated with Randoop and EvoSuite for each one of the 10 subject projects.

Figure 4: Mutation Coverages achieved by the ATSs
generated by Randoop, EvoSuite, and MTSs.

RQ5: There is a large positive correlation between MTSs’ size
and mutation coverage. Also, there is a small positive corre-
lation for EvoSuite ATSs’, but no correlation can be found for
Randood ATSs’.

4.6 Discussion
According to other studies presented in the literature that corrobo-
rate with our findings, current test case generation tools are limited
to detect faults [13, 45]. The main challenges are difficulty to cover
code or produce assertions that require the creation of complex
objects, dealing with external dependencies, and private methods/-
fields.

As an example from our study, consider the code excerpt in List-
ing 1 from the AlreadySelectedException class of the CLI project. The
following mutation could not be even covered by either EvoSuite

or Randoop test suites. Note that option is a private field. On the
other hand, the MTS killed the mutant.
getOption : mutated return of Object value for
org/apache/commons/cli/AlreadySelectedException::getOption to
( if (x != null) null

else throw new RuntimeException )

Listing 1: When the MTSs are more effective and ATSs do
not cover the mutant

1 public Option ge tOp t i on ( ) {
2 return op t i on ;
3 }

Another interesting example is the code excerpt from the Am-
biguousOptionException class of the CLI project presented in List-
ing 2. For the createMessage method, the PITest tool created three
mutants: one Negated Conditional for the while and if command
conditions (lines 11 and 15) and a mutated Return Value similar to
the one presented before (line 20). Randoop ATSs killed the first
negated conditional (at line 11), did not cover the second (at line
15), and covered but did not kill the third (line 20). On the other
hand, Evosuite ATSs did not cover any of the mutants, whereas the
MTS covered but did not kill the mutants. Note that createMessage
is a private method, and matchingOptions can be a tricky object to
handle for data generation.

Listing 2: When Randoop ATSs are more effective
1

2 pr ivate s t a t i c S t r i n g c r e a t eMes s age (
3 f ina l S t r i n g opt ion ,
4 f ina l Co l l e c t i o n < S t r i ng > match ingOpt ions ) {
5 f ina l S t r i n g B u i l d e r buf =
6 new S t r i n g B u i l d e r ( " Ambiguous op t i on : ' " ) ;
7 buf . append ( op t i on ) ;
8 buf . append ( " ' ( cou ld be : " ) ;
9 f ina l I t e r a t o r < S t r i ng > i t =
10 match ingOpt ions . i t e r a t o r ( ) ;
11 while ( i t . hasNext ( ) ) {
12 buf . append ( " ' " ) ;
13 buf . append ( i t . nex t ( ) ) ;
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Figure 5: Mutation Coverage variation from 10 ATSs generated with Randoop and EvoSuite for each one of the 10 subject
projects.

Figure 6: Coverages achieved by the ATSs generated by Randoop, EvoSuite, and MTSs, for each mutation operator applied.

14 buf . append ( " ' " ) ;
15 i f ( i t . hasNext ( ) ) {
16 buf . append ( " , " ) ;
17 }
18 }
19 buf . append ( " ) " ) ;
20 return buf . t o S t r i n g ( ) ;
21 }

Listing 3 presents a code excerpt from the ArrayElementValue
class of the BCEL project. Only the EvoSuite ATSs killed the six
mutants created by the PITest tool for the toString method (at lines
4, 6, and 11). The Randoop ATSs and the MTS did not even cover
the mutants.

Listing 3: When EvoSuite ATSs are more effective
1 public S t r i n g t o S t r i n g ( ) { }
2 f ina l S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;
3 sb . append ( " { " ) ;
4 for ( in t i = 0 ; i < e v a l u e s . l e ng t h ; i ++) {
5 sb . append ( e v a l u e s [ i ] ) ;
6 i f ( ( i + 1 ) < e v a l u e s . l e ng t h ) {
7 sb . append ( " , " ) ;
8 }
9 }
10 sb . append ( " } " ) ;
11 return sb . t o S t r i n g ( ) ;
12 }
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Figure 7: Correlation between the number of test cases and the mutation coverage achieved by the ATSs, generated by
Randoop, EvoSuite, and MTSs.

As we illustrate through the above examples, despite the most
common situation where MTSs achieved higher coverage and mu-
tation score in our study, MTSs are not always more effective than
ATSs [19]. Also, they are hard and error-prone to construct and
may not be as effective as ATSs to detect tricky faults that require
a more elaborate code analysis [19].

Moreover, evolution can improve test suites coverage whereas
also degrade them. From the number of years and the number of
releases between the oldest available release and the release con-
sidered in our study (for 9 out of 10 projects), we cannot conclude
whether evolution is a determinant factor to the MTSs effectiveness.
We cannot observe a correlation. For instance, the oldest projects
are Codec and Lang (16 years of development). Their test suites
achieve 92% and 95% line coverage, respectively, and 87% mutation
coverage. The youngest project is CSV (4 years of development). Its
test suites achieve 92% line coverage and 83% mutation coverage.

Despite the limitations presented by both ATSs and MTSs, it is
important to remark that practices to construct such suites have
improved in the past years. Efforts have been pursued to make
writing test suites more cost-effective, for instance, by investigating
strategies and standards to enhance the quality in MTSs along with
productivity [29, 37]. Likewise, ATSs have achieved steady progress
in improving their effectiveness as annually reported by the Java
Unit Testing Competition [36].

Furthermore, strategies for creating MTS and ATSs have a cru-
cial difference that suggests they might be complementary [44, 48].
While ATSs creation relies primarily on white-box techniques,
MTSs creation usually relies on testers’ intuition and target ex-
pected behavior in a black-box fashion. Therefore, both efforts by
following potentially different points of view may be necessary
to achieve high effectiveness in unit testing. From the examples
we show in this section, there are cases where MTSs and ATSs
are complementary. Considering the 18 mutants created for the
ArrayElementValue class of the BCEL project, EvoSuite ATSs killed
12, the MTS killed 5, and Randoop ATSs killed 1. Together EvoSuite

ATSs and the MTS killed 15 mutants. Moreover, for the Ambigu-
ousOptionException, together the Randoop ATSs, and the MTS killed
two out of the four mutants created.

5 THREATS TO VALIDITY AND LIMITATIONS
There are several threats to the validity of this work. First, to com-
pose our subject projects set, we selected programs written in
Java, built with Maven, with manually written test suites, and also
projects that both Randoop and EvoSuite are able to generate test
cases. Although the projects that we chose range from 1742 to 32607
lines of code, and vary on their purpose, those projects may repre-
sent a specific set of applications (e.g. well structured and tested
Java programs).

Second, we used almost all the default configuration values of
the tools that automatically generate test cases. While tuning can
have an impact on the performance of a search algorithm, in the
context of test data generation, it is difficult to find good settings
that significantly outperform the “default” values suggested in the
literature [18, 38].

Third, the determination of the quality of software tests can be
considered a subjective measurement. Although mutation score and
coverage are two ways to measure test suite quality, that does not
consider the readability of the test cases. If the developers who need
to view tests in order to diagnose defects cannot understand what
the tests do, then the human time and effort could be substantially
increased [38]. Moreover, although mutation analysis can be used
as a proxy for fault detection, it is restricted to the set of mutation
operators available and it may not represent typical defects for the
software at hand. Therefore, we could also have considered a set of
real faults and its detectability by the test suites (ATS and MTS)

Fourth, the tool used for mutation analysis also leads to a po-
tential internal threat to validity. PITest [3], a practical mutation
testing tool for programs written in Java, was used. However, other
options, such as MuJava [40], could be used in future comparisons.

Finally, MTSs may contain both unit and integration test cases
since developers do not often distinguish precisely between them.
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However, a recent study presented by Trautsch et al. [47] shows that
there is no significant difference between the types of defects de-
tected by the unit and integration test cases of a test suite, although
the unit ones are more prone to detect hard to kill defects.

6 RELATEDWORK
Bacchelli et al. [19] conducted a first exploratory study to empir-
ically understand the differences between manual and automatic
unit test generation. The authors considered test effectiveness in
terms of code coverage, mutation score, as well as error finding. In
particular, they investigated the FREENET project [7] as the subject
of their study. Since FREENET used to lack a significant test suite,
the authors first manually created tests for a subset of 15 classes. Af-
terward, the authors applied automatic test generation tools to the
15 classes and compared the automatically generated tests against
the manually created ones. They selected three tools available at
that time, namely Randoop [4], and JUnit Factory [11], designed for
regression testing, and JCrasher [23], designed for defect revelation.
The study reported that automatically generated tests could achieve
a higher code and mutation coverage than the manually generated
ones. The former could also generate unexpected scenarios that
lead to the identification of faults, partially overlapping with those
found manually.

Fraser et al. [28] conducted a human study aimed at understand-
ing the practical value of automated testing tools. The experiment
was organized in two studies: In the first one, they asked the partic-
ipants to write tests for four different Java classes manually; in the
second one, they asked them to generate test suites using EvoSuite
for the same subjects. The authors showed that test case generation
tools could achieve higher code coverage compared to manually
created tests, while automatically generated tests resulted as less
effective in detecting faults.

Similarly, Shamshiri et al. [45] investigated the fault detection
ability of automatically generated tests compared to the manually
written ones. The study involved three testing tools ran over the
Defects4j [34] dataset (5 subject programs). In particular, they ex-
ercised the tools in a regression testing scenario. The test suites
were generated on the fixed versions of the code and then executed
against the buggy versions. Their findings were in line with Fraser
et al. [28]: The tools were only able to find about half of the bugs.

Grano et al. [31] compared the readability of manually and gen-
erated tests. To conduct their study, Grano et al. [31] relied on Evo-
Suite to automatically generate test cases for three subject programs.
They found that automatically generated test cases are significantly
less readable than manually written ones. We do not investigate
the readability of the tests used in our study.

Serra et al. [44] conducted a partial replication of the study of
Bacchelli et al. [19], with the goal of evaluating the improvement
achieved by automated test generation techniques over the course
of the last ten years. In their study, Serra et al. [44] used Randoop,
EvoSuite, and JTExpert to generate test cases automatically. Serra
et al. [44] found that current automatic test case-generation tools
can optimize coverage and mutation scores more than manually
written tests.

Ramler et al. [42] carried out a study addressing how automated
testing tools compare to manual testing. In their study, Ramler

et al. [42] compared the fault detection of manually written test
cases with randomly-generated test cases, using Randoop, for a Java
collection class library containing 35 seeded defects. Fault detection
rates were found to be similar, although the techniques revealed
different kinds of faults.

Most close to our results, the study conducted by Vincenzi et
al. [48] investigates the adequacy, effectiveness, and cost of manu-
ally generated test sets versus automatically generated test sets for
Java programs. Vincenzi et al. [48] used 32 simple subject programs,
implemented by 1 to 3 classes (1.5 on average), in their study. The
authors found that, in general, manual test sets determine higher
statement coverage and mutation score than automatically gener-
ated test sets. Moreover, Vincenzi et al. [48] recognized that the
automatically generated test sets are complementary to the manual
test set. Manual with automated test sets overcame more than 10%,
on average, statement coverage and mutation score, compared to
the rates of the manual test set while keeping a reasonable cost.

To the best of our knowledge, previous studies have considered
a limited amount of classes or subject programs, whereas we used
a set of 10 subject programs with 1368 classes in total. Also, we
use the MTSs created by developers not involved in the study.
Furthermore, we focus on regression test suites, and our results
differ from previous studies [19, 28, 42, 44, 45]. Our study provides
new evidence of the effectiveness of MTSs and ATSs, motivating
further research in the area.

7 CONCLUSION
In this work, we investigate the effectiveness of automatically gen-
erated test suites (ATSs) and manually written test suites (MTSs) in
terms of line coverage and mutation coverage. We focus on ATSs
generated by the Randoop and EvoSuite tools and real MTSs from
10 open-source projects. Additionally, we empirically compare the
randomness of the test suites generated by Randoop and EvoSuite.
We also investigate whether there is a correlation between the test
suite size and its ability to detect faults.

Our findings revealed that current automatic test case generation
tools are not as effective as manually writing tests in terms of line
coverage and mutation coverage. Moreover, the test suite size is
not an indicator of effectiveness, especially for Randoop ATSs.

The results of our study differ from previous studies in the sense
that MTSs are more effetive regarding both line and mutation cov-
erage. However, they also present evidence that ATSs and MTSs
may be complementary. To the best of our knowledge, our study is
the largest so far handling manual test suites created by developers
not involved in the study and focusing on regression test suites.

As future work, we intend to make our results more generaliz-
able by considering more subject programs, unit test generation
tools, evaluation metrics, and mutation testing tools. We also plan
to check whether the results found also hold for other program-
ming languages. Finally, results encourage further research on the
complementary nature of ATSs and MTSs.
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