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Abstract
Comparing the mutation scores achieved for test suites, one
is able to judge which test suite is more effective. However, it
is not known if the mutation score is a fair metric to do such
comparison. In this paper, we present an empirical study,
which compares developer-written and automatically gener-
ated test suites in terms of mutation score and in relation to
the detection ratios of 7 mutation types. Our results indicate
fairness on the mutation score.
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1 Research Problem and Motivation
Mutation Testing [5, 9, 10] is a fault-based testing technique
where syntactic changes are inserted in the original program,
by the application of mutation operators, to create faulty
programs called mutants. Mutants caught by a test suite
are said to be killed. One outcome of the Mutation Testing
process is the mutation score [10], which represents the
number of killed mutants and indicates the ability of a test
suite to detect faults.

Suppose we apply Mutation Testing to measure the effec-
tiveness of test suites produced by two different unit test
generation methods, A and B. By doing so, we compare the
mutation scores of A and B test suites.
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To simplify the problem, suppose we applied just two
mutation operators, MO1 and MO2 and MO1 creates 60%
of all mutants. If A’s test suites detect all mutants of type
MO1, but no mutant of type MO2 and B’s test suites detect
all mutants of type MO2, but no mutant of type MO1, A’s test
suites may have a higher mutation score. But this may not
indicate that A is better than B regarding mutation detection
as in fact their test suites detect different types of mutation.
In this paper, we compare developer-manually written

(MTSs) and automatically generated test suites (ATSs). We
use a set of 10 open-source projects and a set of 7 mutation
operators. Our goal is to answer the following research ques-
tions: [RQ1] Which test generation method produces test
suites that detect more mutants according to each mutation
type?, and [RQ2] Is it fair to compare test suites quality using
the mutation score?

2 Related Work
Previous studies have investigated the use of mutation test-
ing for software testing experiments [5, 9, 11]. But they
mainly investigate whether mutants are a valid substitute for
real faults. Our study is conducted on a different perspective:
we examine each mutation type detection independently
and compare the results with the mutation score to evaluate
whether the mutation score is a fair metric.

3 Technical Approach
Test Case Generation Techniques. We used Randoop [3, 14]
and EvoSuite [1, 8] to automatically generate test suites. We
also used manually written test suites [13] that exist on the
projects that compose our experiment.
Mutation Testing Tool. We used PIT [2, 6] with its default

mutation operators. These operators are designed to generate
hard to kill mutants, and generating a minimal amount of
equivalent mutants [4].

Case Study Applications. We selected the projects to com-
pose our experiment based on the following requirements:
1) The project is built with Maven; 2) The project has a man-
ually written test suite; 3) It is possible to generate test cases
for the project using both Randoop and EvoSuite; 4) It is
possible to generate mutants of the project using PIT.
We evaluated the above requirements for all 43 projects

from the Apache Commons repository. The 10 projects that
suit the requirements are described in Table 1.

Experiment Procedure. We generated 10 test suites, for each
project, with each test generation tool, using their default
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Table 1. Description of the projects.
Project Version # of Classes LOC
BCEL 6.3 426 30812
CLI 1.4 25 2790

Codec 1.12 86 8325
CSV 1.6 14 1742
Email 1.5 21 2815

FileUpload 1.4 47 2425
Imaging 1.0 403 32607
Lang 3.8.1 238 27646

Statistics 1.0 35 2665
Validator 1.6 73 7409
Total — 1368 119236

configuration, except for the following argument changes:
Evosuite’s separateClassLoader = false to avoid conflicts
with PIT’s bytecode instrumentations; Randoop’s flaky-
test-behavior = DISCARD to remove flaky tests and we
also changed Randoop’s randomseed in every execution to
produce different test suites, as Randoop is deterministic by
default.

From the ATSs of both tools, as well as the MTSs, we man-
ually removed the tests that did not pass, since we wanted to
analyze the test suites using mutation analysis. Having the
green test suites, we ran PIT for each one of them 10 times, in
order to look for nondeterminism. We found that the outputs
of the executions were different just for the manual test suite
of the Statistics project. In any case, we used the mean of
the 10 executions to represent PIT’s output.

4 Experimental Results
[RQ1] The detection ratios of each mutation type according
to each test generation method are presented in Figure 1.
For each mutation type, we compared the detection ratios
achieved by the tests from the 3 test generation techniques
using the Wilcoxon Test. We found that the MTSs are better
(p-value < 0.05) than both suites generated with EvoSuite
and Randoop at detecting 6 mutation types and that there
is no significant evidence (p-value ≥ 0.05) of a difference
between them at detecting 1 mutation type: InvertNegatives.
We also found that the test suites from EvoSuite are better (p-
value < 0.05) than those produced by Randoop at detecting 3
mutation types: ConditionalsBoundary, NegateConditionals,
and Math; and that there is no significant evidence (p-value
≥ 0.05) of a difference between them at detecting the other 4
mutation types.
[RQ2] The mutation scores achieved for the tests from each
test generation technique are presented in Figure 2. We com-
pared the mutation scores from each technique using the
Wilcoxon Test and we found that MTSs have higher muta-
tion score than EvoSuite’s and Randoop’s test suites (p-value
= 0.000976 in both cases). We also found that EvoSuite’s test
suites have higher mutation score than Randoop’s test suites

Figure 1. Detection ratios of PIT’s default mutation types
according to test suites from different test generation tech-
niques.
(p-value = 0.00293). Thus, according to the mutation score,
MTSs are better than the ATSs and EvoSuite’s test suites are
better than Randoop’s test suites. Relating these results with
the answer to RQ1, we found that when the mutation score
of test suites from a test generation technique A is higher
than the mutation score of test suites from a technique B, A’s
tests are better than B’s tests in relation to certain mutation
types and equivalent in relation to other mutation types. We
also found moderate to strong positive correlation, using
Spearman’s Rank correlation, between the mutation types
detection ratio, according to the test suites from the 3 unit
test generation methods.

Figure 2. Mutation scores achieved for the test suites from
each test generation technique.

5 Conclusions
All data used in our experiment and the statistical analysis
are publicly available at https://biabs1.github.io/SRC-2019/.
Our results suggest that it is fair to use the mutation score to
compare test suites from different test generation techniques.
The moderate to strong positive correlations between the
mutations detection ratios indicate that the detection of dif-
ferent mutants by test suites tend to grow proportionally.
However, this may also indicate duplicated mutants [7, 12].
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