LExecutor: Learning ==
Guided Execution

Beatriz Souza and Michael Pradel

: .- .".o...:_:-
European Research Council
Established by the European Commission

ersity of Stuttgart
any

Software

Why Execute Code?

* Enables various dynamic analysis

Vulnerability detection Performance analysis

LExecutor: Learning-Guided Execution, FSE'23

Motivation

if (not has min_size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train_data = all data[0:train_len]

O oo ~NJNOo Ul B WN B

...

=
()

LExecutor: Learning-Guided Execution, FSE'23

Motivation

/Missing variable

if (not has min _size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train_data = all data[0:train_len]

O oo ~NJNOo Ul B WN B

...

=
()

LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing function

Missi bl
l / Issing variable

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train data = all data[O:train len]

O oo ~NJNOo Ul B WN B

...

=
()

LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing function

Missi iabl
l / Issing variable

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train data = all data[O:train len] X
Missing variable

O oo ~NJNOo Ul B WN B

...

=
()

LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing function

Missi iabl
l / Issing variable

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train data = all data[0O:train len] W
Missing variable

O oo ~NJNOo Ul B WN B

...
Missing import
and attribute

=
()

LExecutor: Learning-Guided Execution, FSE'23

Executing is NOT Easy

Incomplete code occurs in many usage scenarios:
e Code snippets from Stack Overflow
* Code generated by language models
* Code extracted from complex projects

LExecutor: Learning-Guided Execution, FSE'23

Executing is NOT Easy

Incomplete code occurs in many usage scenarios:
e Code snippets from Stack Overflow
* Code generated by language models
* Code extracted from complex projects

Can we automatically fill in
the missing information?

LExecutor: Learning-Guided Execution, FSE'23 9

LExecutor

Learning-guided approach for executing arbitrary code snippets

e Predict missing values with neural model
* |nject values into the execution

LExecutor: Learning-Guided Execution, FSE'23

10

Overview of

Executable code Code to execute

Instrumentation

Y
Instrumented code Instrumented code

Execute l

Context-value pairs

Train Missing value and
code context

Y 2\ Y

Neural model Runtime engine

N 4

Likely runtime value

Training Prediction

Overview of LExecutor

Executable code Code to execute

Instrumentation
Y Y

Instrumented code Instrumented code

Execute
Y

Context-value pairs

Train Missing value and
code context

Y m Y

Neural model Runtime engine

N 4

Likely runtime value

Training Prediction

LExecutor: Learning-Guided Execution, FSE'23

12

Instrumentation

AST-based code transformations:

* Wrap variable reads into _n ()

* Wrap attribute reads into _a_{()

* Wrap calls of functions and methods into _c_{)

Instrumentation

AST-based code transformations:

* Wrap variable reads into _n ()

* Wrap attribute reads into _a_{()

* Wrap calls of functions and methods into _c_{)

Original code: Instrumented code:

»

y=x+1 y=_n_(537,"x",lambda: x) + 1

Instrumentation

AST-based code transformations:

* Wrap variable reads into _n ()

* Wrap attribute reads into _a_{()

* Wrap calls of functions and methods into _c_{)

Original code: Instrumented code:
- y=x+1 y=_n_(537,"x",lambda: x) + 1
!

Variable name

Instrumentation

AST-based code transformations:

* Wrap variable reads into _n ()

* Wrap attribute reads into _a_{()

* Wrap calls of functions and methods into _c_{)

Original code: Instrumented code:

»

y=x+1 y=_n_(537,"x",lambda: x) + 1

Variablename \ :
Function to read value and
react in a controlled manner

Instrumentation

AST-based code transformations:

* Wrap variable reads into _n ()

* Wrap attribute reads into _a_{()

* Wrap calls of functions and methods into _c_{)

Original code: Instrumented code:

»

y=x+1 y=_n_(537,"x",lambda: x) + 1

. /:/ariable name \
Unique ID Function to read value and

react in a controlled manner

Overview of LExecutor

Executable code Code to execute

Instrumentation

Y
Instrumented code Instrumented code

Execute
Y

Context-value pairs

Train Missing value and
code context

Y

Neural model Runtime engine

Likely runtime value

Training Prediction

LExecutor: Learning-Guided Execution, FSE'23

Neural Model: Data Representation

Code
context

Model > Value

Neural Model: Data Representation

Code k]
ode >
context Value
n <sep> k <sep> Cpre <mask> Cpost
Name used to Kind of value Code
refer toavalue (variable, before/after
attribute, or the reference

return value) to the value

Neural Model: Data Representation

Code

context Model » Value

Concrete values abstracted
into 23 classes, e.g.,

* None, True, False

* Negative/zero/positive integer
* Empty/non-empty list

e (Callable

Overview of LExecutor

Executable code Code to execute

Instrumentation

Y
Instrumented code Instrumented code

Execute
Y

Context-value pairs

Train Missing value and
code context

\ 2\

Neural model Runtime engine

Likely runtime value

Training Prediction

LExecutor: Learning-Guided Execution, FSE'23

Runtime Engine

During prediction:
For each use of a value

(e.g. Positive integer)

LExecutor: Learning-Guided Execution, FSE'23

(e.g. 1)

23

Evaluation

 RQ1: Accuracy of the Neural Model

 RQ2: Effectiveness at Covering Code

* RQ3: Efficiency at Guiding Executions

 RQ4: Using LExecutor to Find Semantics-Changing Commits

Evaluation

* RQ1: Accuracy of the Neural Model
* RQ2: Effectiveness at Covering Code
* RQ3: Efficiency at Guiding Executions
 RQ4: Using LExecutor to Find Semantics-Changing Commits

RQ1: Accuracy of the Neural Model

RQ1: Accuracy of the Neural Model

Models:
e CodeT5
e CodeBERT

RQ1: Accuracy of the Neural Model

Datasets:
Project Description Unique
value-use
events
Ansible Automation of software infrastructure 43,090
Django ~ Web framework 121,567
Keras Deep learning library 30,709
Request Client-side HTTP library 5,273
Rich Text formatting in the terminal 25,370
Total 226,009

LExecutor: Learning-Guided Execution, FSE'23

RQ1: Accuracy of the Neural Model

Datasets:
Project Description Unique
value-use
events
Ansible Automation of software infrastructure 43,090
Django ~ Web framework 121,567
Keras Deep learning library 30,709
Request Client-side HTTP library 5,273
Rich Text formatting in the terminal 25,370
95%: Training
Total 226,009

T

5%: Testing

LExecutor: Learning-Guided Execution, FSE'23

RQ1: Accuracy of the Neural Model

100

80

60

Accuracy (%)

20

94.5

Top-1 Top-3

LExecutor: Learning-Guided Execution, FSE'23

96.8

B CodeBERT

mw CodeT5
Top-5

30

RQ2: Effectiveness at Covering Code

RQ2: Effectiveness at Covering Code

Datasets:

‘ ’ Functions

Project Description Functions LoC
Black Code formatting 200 2,961
Flask Web applications 200 1,354
Pandas Data analysis 200 2,015
Scrapy Web scraping 200 1,198
TensorFlow Deep learning 200 2,125
Total 1,000) 9,653

LExecutor: Learning-Guided Execution, FSE'23

RQ2: Effectiveness at Covering Code

Datasets:

‘ ’ Functions

Project Description Functions LoC
Black Code formatting 200 2,961
Flask Web applications 200 1,354
Pandas Data analysis 200 2,015
Scrapy Web scraping 200 1,198
TensorFlow Deep learning 200 2,125
Total 1,000) 9,653

stackoverflow snippets

462)syntactically correct code snippetsin

answers to 1,000 Python-related questions

LExecutor: Learning-Guided Execution, FSE'23 33

RQ2: Effectiveness at Covering Code

Baselines:
* Asls

* Naive

e Random

* Frequency
* TypedPy
* Pynguin Tests

1. TypedPy: Practical deep similarity learning-based type inference for Python, ICSE'22 (Amir M Mir, Evaldas LatoSkinas, Sebastian Proksch, and Georgios Gousios)

. . . . 34
2. Automated Unit Test Generation for Python, SSBSE'20 (Stephan Lukasczyk, Florian Kroif3, and Gordon Fraser)

RQ2: Effectiveness at Covering Code

o Functions

-==- mean —— median o fliers

LExecutor] | I

Frequency: | I ‘
TypedPy/ |7ﬂ:—- emem o

Randomi i ®eee 060 o oo0ceoe

Naive| 1 @s 0 00e o o0 o o

Approach

Pynguin TestS' GpENeamD e ¢ 000 000] eee © o0 o oo

As Isi CYENEINND 000 ¢ ©

0 20 40 60 80 100
Line Coverage (%)

LExecutor: Learning-Guided Execution, FSE'23

RQ2: Effectiveness at Covering Code

stackoverflow snippets

---- mean —— median

LExecutor: | I

Frequency 1

TypedPy h

Approach

Random I
Naive I

As Is i

0 20 40 60 80 100
Line Coverage (%)

LExecutor: Learning-Guided Execution, FSE'23

36

LExecuting the Motivating Example

if (not has min _size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")

train_data = all data[0:train_len]

O OO JdO UL B WN -

...

=

LExecutor: Learning-Guided Execution, FSE'23

37

LExecuting the Motivating Example

=

O OO JdO UL B WN -

/Non-empty list

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")
train data = all data[O:train len]

...

LExecutor: Learning-Guided Execution, FSE'23

38

LExecuting the Motivating Example

=

O OO JdO UL B WN -

Function that returns True

Non- ty list
l / on-empty lis

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")
train data = all data[O:train len]

...

LExecutor: Learning-Guided Execution, FSE'23

39

LExecuting the Motivating Example

=

O OO JdO UL B WN -

Function that returns True

Non- ty list
l / on-empty li

1f (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))
logger.info(f"Extracting training data with {config str}")
train data = all data[O:train len] X

Non-empty string
...

LExecutor: Learning-Guided Execution, FSE'23

40

LExecuting the Motivating Example

=

O Vo NOUL S WN -

Function that returns True

Non- ty list
l /onempyls

if (not has min size(all data)):
raise RuntimeError("not enough data")

train_len = round(0.8 * len(all data))

logger.info(f"Extracting training data with {config str}")

A

train data = all data[O:train len])
Non-empty string

#

Object with
a method

LExecutor: Learning-Guided Execution, FSE'23

41

Why Execute Code?

* Enables various dynamic analysis

Vulnerability detection

xecutor: Learning-Guided Execution, FSE'23

Overview of LExecutor

Executable code Code to execute
Instrumentation
Instrumented code Instrumented code
Execute

Context-value pairs

Train Missing value and
code context

Neural model Runtime engine

Likely runtime value

Training Prediction

LExecutor: Learning-Guided Execution, FSE'23 11

Executing is NOT Easy

There are many incomplete code:
* Code snippets from Stack Overflow
* Code generated by language models
* Code extracted from complex projects

Can we automatically fill in
the missing information?

LExecutor: Learning-Guided Execution, FSE'23

v}

RQ2: Effectiveness at Covering Code

O Functions

===+ mean ~— median « fliers
LExecutor I i
'
Frequency | ! we we
Type4Py I i o smem o
=
o]
[1
=4 Random | i mese ses 0 sesese
o 1
[=%
<
Naive [H s e oses o se s @ .

Pynguin Tests |....-.... cessess & sess ss mm
As Is |_: smees s ee o
0 20 40 60 80 100

Line Coverage (%)

LExecutor: Learning-Guided Execution, FSE'23 31

Abstraction of Values

Table 1: Fine-grained abstraction and concretization of val-

ues.

Abstract class of values

Concretization (Python)

Common primitive values:

None
True
False
Built-in numeric types:
Negative integer
Zero integer
Positive integer
Negative float
Zero float
Positive float
Strings:

Empty string
Non-empty string
Built-in sequence types:

Empty list
Non-empty list
Empty tuple
Non-empty tuple

Built-in set and dict types:

Empty set

Non-empty set

Empty dictionary

Non-empty dictionary
Functions and objects:

Callable

Resource

Object

None
True
False

nn

"n

[]
[Dummy ()]
O
(Dummy ())

set()
set(Dummy ())
{1

{"a": Dummy()}

Dummy
DummyResource()
Dummy ()

Table 2: Coarse-grained abstraction and two modes for con-
cretizing values.

Abstract class of values Concretization (Python)

Deterministic Randomized

Common primitive values:

None None

Boolean True True, False
Built-in numeric types:

Integer 1 -1,0,1

Float 1.9 -1.9,0.0,1.0
Strings:

String "a" g
Built-in sequence types:

List [Dummy ()] L1, [Dummy (3]

Tuple (Dummy ())), (Dummy())
Built-in set and dict types:

Set set (Dummy()) set(), set(Dummy())

Dictionary {"a": Dummy()} {3.{"a": Dummy()}
Functions and objects:

Callable Dummy

Resource DummyResource()

Object Dummy ()

LExecutor: Learning-Guided Execution, FSE'23

43

Code Instrumentation

Original code:

x = foo()
y = X.bar + z

Instrumented code:

X = _c_(536, _n_(535, "foo", lambda: foo0))
y = _a_(538, _n_(537, "x", lambda: x), "bar") \
+ _n_(539, "z", lambda: Zz)

LExecutor: Learning-Guided Execution, FSE'23

44

RQ3: Efficiency at Guiding Executions

* Instrumentation time
4.5 ms per LoC on average

 Execution time

Table 6: Average execution time (ms) per LoC.

Approach Dataset

Functions Stack Overflow
CodeT5 FG 178.69 47.29
CodeT5 CG (deterministic) 185.08 46.23
CodeT5 CG (randomized) 167.48 46.31
CodeBERT FG 464.83 133.76
CodeBERT CG (deterministic) 479.89 126.47
CodeBERT CG (randomized) 438.64 127.20
Random 3.94 5.93
Frequency 3.61 5.73
Naive 3.62 5.42

AsIs 1.50 5.19

RQ4: Finding Semantics-Changing Commits

e Dataset: 1,000 most recent commits from each project used for
evaluation that change a single function.

Table 7: Results from finding semantics-changing commits.

Project Commits
Total Exceptional Same Semantics-
behavior changing
Black 68 41 27 0
Flask 114 78 36 0
Pandas 611 403 207 1
Scrapy 522 292 220 10
TensorFlow 320 241 77 2
Total 1,635 1,055 567 13

LExecutor: Learning-Guided Execution, FSE'23 46

Average Missing Values

e Open-source functions: 13
* SO snippets: 7

	Slide 1: LExecutor: Learning Guided Execution
	Slide 2: Why Execute Code?
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Executing is NOT Easy
	Slide 9: Executing is NOT Easy
	Slide 10: LExecutor
	Slide 11: Overview of LExecutor
	Slide 12: Overview of LExecutor
	Slide 13: Instrumentation
	Slide 14: Instrumentation
	Slide 15: Instrumentation
	Slide 16: Instrumentation
	Slide 17: Instrumentation
	Slide 18: Overview of LExecutor
	Slide 19: Neural Model: Data Representation
	Slide 20: Neural Model: Data Representation
	Slide 21: Neural Model: Data Representation
	Slide 22: Overview of LExecutor
	Slide 23: Runtime Engine
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: RQ1: Accuracy of the Neural Model
	Slide 27: RQ1: Accuracy of the Neural Model
	Slide 28: RQ1: Accuracy of the Neural Model
	Slide 29: RQ1: Accuracy of the Neural Model
	Slide 30: RQ1: Accuracy of the Neural Model
	Slide 31: RQ2: Effectiveness at Covering Code
	Slide 32: RQ2: Effectiveness at Covering Code
	Slide 33: RQ2: Effectiveness at Covering Code
	Slide 34: RQ2: Effectiveness at Covering Code
	Slide 35: RQ2: Effectiveness at Covering Code
	Slide 36: RQ2: Effectiveness at Covering Code
	Slide 37: LExecuting the Motivating Example
	Slide 38: LExecuting the Motivating Example
	Slide 39: LExecuting the Motivating Example
	Slide 40: LExecuting the Motivating Example
	Slide 41: LExecuting the Motivating Example
	Slide 42
	Slide 43: Abstraction of Values
	Slide 44: Code Instrumentation
	Slide 45: RQ3: Efficiency at Guiding Executions
	Slide 46: RQ4: Finding Semantics-Changing Commits
	Slide 47: Average Missing Values

