
LExecutor: Learning
Guided Execution

Beatriz Souza and Michael Pradel

Why Execute Code?

• Enables various dynamic analysis

LExecutor: Learning-Guided Execution, FSE'23 2

Vulnerability detection

Bug detection Semantic equivalence

Performance analysis

Motivation

3LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing variable

4LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing variable
Missing function

5LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing variable
Missing function

Missing variable

6LExecutor: Learning-Guided Execution, FSE'23

Motivation

Missing variable
Missing function

Missing variable

Missing import
and attribute

7LExecutor: Learning-Guided Execution, FSE'23

Executing is NOT Easy

Incomplete code occurs in many usage scenarios:
• Code snippets from Stack Overflow

• Code generated by language models

• Code extracted from complex projects

LExecutor: Learning-Guided Execution, FSE'23 8

Executing is NOT Easy

Incomplete code occurs in many usage scenarios:
• Code snippets from Stack Overflow

• Code generated by language models

• Code extracted from complex projects

LExecutor: Learning-Guided Execution, FSE'23 9

Can we automatically fill in
the missing information?

LExecutor

Learning-guided approach for executing arbitrary code snippets
• Predict missing values with neural model

• Inject values into the execution

LExecutor: Learning-Guided Execution, FSE'23 10

Overview of LExecutor

11LExecutor: Learning-Guided Execution, FSE'23

Overview of LExecutor

12LExecutor: Learning-Guided Execution, FSE'23

Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()

13LExecutor: Learning-Guided Execution, FSE'23

Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()

14LExecutor: Learning-Guided Execution, FSE'23

Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()

15LExecutor: Learning-Guided Execution, FSE'23

Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name

Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()

16LExecutor: Learning-Guided Execution, FSE'23

Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name
Function to read value and
react in a controlled manner

Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()

17LExecutor: Learning-Guided Execution, FSE'23

Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name
Function to read value and
react in a controlled manner

Unique ID

Overview of LExecutor

18LExecutor: Learning-Guided Execution, FSE'23

Neural Model: Data Representation

Code
context ValueModel

19LExecutor: Learning-Guided Execution, FSE'23

Neural Model: Data Representation

Code
context ValueModel

20

n <sep> k <sep> cpre <mask> cpost

Name used to
refer to a value

Kind of value
(variable,
attribute, or
return value)

Code
before/after
the reference
to the value

LExecutor: Learning-Guided Execution, FSE'23

Neural Model: Data Representation

Code
context ValueModel

21

Concrete values abstracted
into 23 classes, e.g.,
• None, True, False
• Negative/zero/positive integer
• Empty/non-empty list
• Callable
• ...

LExecutor: Learning-Guided Execution, FSE'23

Overview of LExecutor

22LExecutor: Learning-Guided Execution, FSE'23

Runtime Engine

During prediction:

For each use of a value

23LExecutor: Learning-Guided Execution, FSE'23

(e.g. Positive integer) (e.g. 1)

Evaluation

• RQ1: Accuracy of the Neural Model

• RQ2: Effectiveness at Covering Code

• RQ3: Efficiency at Guiding Executions

• RQ4: Using LExecutor to Find Semantics-Changing Commits

LExecutor: Learning-Guided Execution, FSE'23 24

Evaluation

• RQ1: Accuracy of the Neural Model

• RQ2: Effectiveness at Covering Code

• RQ3: Efficiency at Guiding Executions

• RQ4: Using LExecutor to Find Semantics-Changing Commits

LExecutor: Learning-Guided Execution, FSE'23 25

RQ1: Accuracy of the Neural Model

LExecutor: Learning-Guided Execution, FSE'23 26

RQ1: Accuracy of the Neural Model

Models:

• CodeT5

• CodeBERT

LExecutor: Learning-Guided Execution, FSE'23 27

RQ1: Accuracy of the Neural Model

Datasets:

LExecutor: Learning-Guided Execution, FSE'23 28

RQ1: Accuracy of the Neural Model

Datasets:

LExecutor: Learning-Guided Execution, FSE'23 29

95%: Training

5%: Testing

RQ1: Accuracy of the Neural Model

LExecutor: Learning-Guided Execution, FSE'23 30

RQ2: Effectiveness at Covering Code

LExecutor: Learning-Guided Execution, FSE'23 31

RQ2: Effectiveness at Covering Code

Datasets:

LExecutor: Learning-Guided Execution, FSE'23 32

Functions

RQ2: Effectiveness at Covering Code

Datasets:

LExecutor: Learning-Guided Execution, FSE'23 33

Functions Snippets

462 syntactically correct code snippets in

answers to 1,000 Python-related questions

RQ2: Effectiveness at Covering Code

Baselines:

• As Is

• Naive

• Random

• Frequency

• Type4Py

• Pynguin Tests

1. Type4Py: Practical deep similarity learning-based type inference for Python, ICSE'22 (Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios)
2. Automated Unit Test Generation for Python, SSBSE'20 (Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser)

34

1

2

RQ2: Effectiveness at Covering Code

LExecutor: Learning-Guided Execution, FSE'23 35

Functions

RQ2: Effectiveness at Covering Code

LExecutor: Learning-Guided Execution, FSE'23 36

Snippets

LExecuting the Motivating Example

37LExecutor: Learning-Guided Execution, FSE'23

LExecuting the Motivating Example

Non-empty list

38LExecutor: Learning-Guided Execution, FSE'23

LExecuting the Motivating Example

Non-empty list

39

Function that returns True

LExecutor: Learning-Guided Execution, FSE'23

LExecuting the Motivating Example

Non-empty list

40

Function that returns True

Non-empty string

LExecutor: Learning-Guided Execution, FSE'23

LExecuting the Motivating Example

Non-empty list

41

Function that returns True

Non-empty string

Object with
a method

LExecutor: Learning-Guided Execution, FSE'23

Abstraction of Values

43LExecutor: Learning-Guided Execution, FSE'23

Code Instrumentation

44LExecutor: Learning-Guided Execution, FSE'23

RQ3: Efficiency at Guiding Executions

• Instrumentation time
4.5 ms per LoC on average

• Execution time

45LExecutor: Learning-Guided Execution, FSE'23

RQ4: Finding Semantics-Changing Commits

• Dataset: 1,000 most recent commits from each project used for
evaluation that change a single function.

46LExecutor: Learning-Guided Execution, FSE'23

Average Missing Values

• Open-source functions: 13

• SO snippets: 7

LExecutor: Learning-Guided Execution, FSE'23 47

	Slide 1: LExecutor: Learning Guided Execution
	Slide 2: Why Execute Code?
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Executing is NOT Easy
	Slide 9: Executing is NOT Easy
	Slide 10: LExecutor
	Slide 11: Overview of LExecutor
	Slide 12: Overview of LExecutor
	Slide 13: Instrumentation
	Slide 14: Instrumentation
	Slide 15: Instrumentation
	Slide 16: Instrumentation
	Slide 17: Instrumentation
	Slide 18: Overview of LExecutor
	Slide 19: Neural Model: Data Representation
	Slide 20: Neural Model: Data Representation
	Slide 21: Neural Model: Data Representation
	Slide 22: Overview of LExecutor
	Slide 23: Runtime Engine
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: RQ1: Accuracy of the Neural Model
	Slide 27: RQ1: Accuracy of the Neural Model
	Slide 28: RQ1: Accuracy of the Neural Model
	Slide 29: RQ1: Accuracy of the Neural Model
	Slide 30: RQ1: Accuracy of the Neural Model
	Slide 31: RQ2: Effectiveness at Covering Code
	Slide 32: RQ2: Effectiveness at Covering Code
	Slide 33: RQ2: Effectiveness at Covering Code
	Slide 34: RQ2: Effectiveness at Covering Code
	Slide 35: RQ2: Effectiveness at Covering Code
	Slide 36: RQ2: Effectiveness at Covering Code
	Slide 37: LExecuting the Motivating Example
	Slide 38: LExecuting the Motivating Example
	Slide 39: LExecuting the Motivating Example
	Slide 40: LExecuting the Motivating Example
	Slide 41: LExecuting the Motivating Example
	Slide 42
	Slide 43: Abstraction of Values
	Slide 44: Code Instrumentation
	Slide 45: RQ3: Efficiency at Guiding Executions
	Slide 46: RQ4: Finding Semantics-Changing Commits
	Slide 47: Average Missing Values

