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Why Execute Code?

• Enables various dynamic analysis
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Vulnerability detection

Bug detection Semantic equivalence

Performance analysis



Motivation
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Motivation

Missing variable
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Motivation

Missing variable
Missing function

Missing variable

Missing import
and attribute
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Executing is NOT Easy

Incomplete code occurs in many usage scenarios:
• Code snippets from Stack Overflow

• Code generated by language models

• Code extracted from complex projects
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Can we automatically fill in 
the missing information?



LExecutor

Learning-guided approach for executing arbitrary code snippets
• Predict missing values with neural model

• Inject values into the execution
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Overview of LExecutor
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Overview of LExecutor
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Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()

• Wrap calls of functions and methods into _c_()
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Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1



Instrumentation
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Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name



Instrumentation
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Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name
Function to read value and
react in a controlled manner



Instrumentation

AST-based code transformations:

• Wrap variable reads into _n_()

• Wrap attribute reads into _a_()
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Original code: Instrumented code:
y = x + 1 y = _n_(537, "x", lambda: x) + 1

Variable name
Function to read value and
react in a controlled manner

Unique ID



Overview of LExecutor
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Neural Model: Data Representation

Code
context ValueModel
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Neural Model: Data Representation

Code
context ValueModel
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n <sep> k <sep> cpre <mask> cpost

Name used to
refer to a value

Kind of value
(variable, 
attribute, or
return value)

Code
before/after
the reference
to the value
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Neural Model: Data Representation

Code
context ValueModel
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Concrete values abstracted
into 23 classes, e.g.,
• None, True, False
• Negative/zero/positive integer
• Empty/non-empty list
• Callable
• ...
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Overview of LExecutor
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Runtime Engine

During prediction:

For each use of a value
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(e.g. Positive integer) (e.g. 1)



Evaluation

• RQ1: Accuracy of the Neural Model

• RQ2: Effectiveness at Covering Code

• RQ3: Efficiency at Guiding Executions

• RQ4: Using LExecutor to Find Semantics-Changing Commits
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RQ1: Accuracy of the Neural Model
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RQ1: Accuracy of the Neural Model

Models:

• CodeT5

• CodeBERT
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RQ1: Accuracy of the Neural Model

Datasets:
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RQ1: Accuracy of the Neural Model

Datasets:
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95%: Training

5%: Testing



RQ1: Accuracy of the Neural Model
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RQ2: Effectiveness at Covering Code

LExecutor: Learning-Guided Execution, FSE'23 31



RQ2: Effectiveness at Covering Code

Datasets:
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Functions



RQ2: Effectiveness at Covering Code

Datasets:
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Functions Snippets

462 syntactically correct code snippets in

answers to 1,000 Python-related questions



RQ2: Effectiveness at Covering Code

Baselines:

• As Is

• Naive

• Random

• Frequency

• Type4Py

• Pynguin Tests

1. Type4Py: Practical deep similarity learning-based type inference for Python, ICSE'22 (Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios)
2.  Automated Unit Test Generation for Python, SSBSE'20 (Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser)
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RQ2: Effectiveness at Covering Code
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Functions



RQ2: Effectiveness at Covering Code
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Snippets



LExecuting the Motivating Example
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LExecuting the Motivating Example

Non-empty list
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LExecuting the Motivating Example

Non-empty list
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Function that returns True

LExecutor: Learning-Guided Execution, FSE'23



LExecuting the Motivating Example

Non-empty list
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Function that returns True

Non-empty string
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LExecuting the Motivating Example

Non-empty list
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Function that returns True

Non-empty string

Object with
a method
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Abstraction of Values
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Code Instrumentation
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RQ3: Efficiency at Guiding Executions

• Instrumentation time
4.5 ms per LoC on average

• Execution time
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RQ4: Finding Semantics-Changing Commits

• Dataset: 1,000 most recent commits from each project used for 
evaluation that change a single function.
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Average Missing Values

• Open-source functions: 13

• SO snippets: 7
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