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Should not change 
the semantics!
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Motivating Example

https://github.com/scrapy/scrapy/commit/694c6d3d
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Motivating Example

https://github.com/scrapy/scrapy/commit/694c6d3d

Semantics changes if
request.meta.get('max_retry_times')
returns 0
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Motivating Example

https://github.com/scrapy/scrapy/commit/49c5afc5



How to Find Semantics-Breaking Changes?
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Old Code New Code

Compare

behavior
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Old Code New Code

Compare

Executing is not always easy!

behavior
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FSE'23

Learning-guided approach for executing arbitrary code snippets

• Predict missing values with neural model

• Inject values into the execution



Example of Incomplete Code

Missing variable
Missing function

Missing variable

Missing import
and attribute

10LExecutor: Learning-Guided Execution, FSE'23



LExecuting the Incomplete Code

Non-empty list
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Function that returns True

Non-empty string

Object with a method

LExecutor: Learning-Guided Execution, FSE'23



ChangeGuard

Pairwise Learning-guided approach for validating code changes
• Key idea is to execute two versions of a code snippet side-by-side, 

while predicting and injecting any missing values into the 
execution.
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Overview of ChangeGuard
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Overview of ChangeGuard
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Pairwise Learning-Guided Execution

• Merge f_old and f_new into Comparison Program

15

def f_old():
 # old code

def f_new():
# new code

f_old()
f_new()

# Code to compare behavior



Pairwise Learning-Guided Execution

• Predict diverse and project-specific values (!= LExecutor)
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Pairwise Learning-Guided Execution

• Ensure consistency and non-interference
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def f_old():
 ages = data.ages
 data.ages.append(100)

  …
def f_new():

ages = data.ages
  …
f_old()
f_new()

# Code to compare behavior

Consistency map with deep-copies:
data.ages → ([23, 42], deepcopy([23, 42]))



Pairwise Learning-Guided Execution

More details in the paper:
• Handling Calls to External Functions
• Handling Indexing Operations
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Overview of ChangeGuard
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Compare Execution Behavior

• Repeat pairwise learning-guided execution (k = 300)
• After each execution of f_old and f_new compare:

- Argument and return values
- Output written to console
- Called functions
- Raised exceptions
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Overview of ChangeGuard
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Any behavior difference Otherwise

Changed lines not reached



Evaluation

• RQ1: Effectiveness
• RQ2: Comparison with Regression Testing
• RQ3: Accuracy of the Neural Model
• RQ4: Robustness and Coverage
• RQ5: Efficiency
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Evaluation
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"refactor", "simplify", "cleanup", "optimize"



Evaluation
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224 single function changes



Evaluation
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165 changes 
(expected to be semantics-preserving)

1. RIdiom: Making Python Code Idiomatic by Automatic Refactoring Non-Idiomatic Python Code with Pythonic Idioms (FSE’22)
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Evaluation
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GPT-3.5: 187 changes
GPT-4: 258 changes

Prompt: "Improve code quality while preserving behavior"



RQ1: Effectiveness on Manually Annotated Changes
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Precision: 77.1%

Recall: 69.5%

Accuracy: 78.1%
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Precision: 77.1%

Recall: 69.5%

Accuracy: 78.1%

-> ChangeGuard's predictions are correct for the majority of the code changes!



RQ1: Effectiveness on Changes by             and
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RQ1: Effectiveness on Changes by             and
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Bug in RIdiom
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Bug in RIdiom

30 random cases 
(per model)

GPT-3.5: 21 changing
GPT-4: 16 changing



RQ1: Effectiveness on Changes by             and
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Bug in RIdiom

30 random cases 
(per model)

GPT-3.5: 21 changing
GPT-4: 16 changing

-> LLMs often fail to improve the code while 
preserving its semantics;

-> ChangeGuard is effective to identify such
semantics-breaking code changes!



Example
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Code Refactored by GPT-4



Example
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Code Refactored by GPT-4
Behavior changes for args = [], [], [...] 



RQ2: Comparison with Existing Regression Tests
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No test results
Precision: 83.3%

Recall: 7.6%

Accuracy: 47.5%



RQ2: Comparison with Existing Regression Tests
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No test results
Precision: 83.3%

Recall: 7.6%

Accuracy: 47.5%
-> ChangeGuard is more effective than the existing regression tests!



RQ5: Efficiency
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• Instrumentation: 1.15 seconds
• First execution: 1.67 seconds
• Extra executions: 1.01 seconds

Executions to reach a conclusion



RQ5: Efficiency
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• Instrumentation: 1.15 seconds
• First execution: 1.67 seconds
• Extra executions: 1.01 seconds

Executions to reach a conclusion

-> Reducing the number of executions,
ChangeGuard becomes more efficient 
for a small reduction in recall!
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Example
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Code Refactored by RIdiom



Example
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Code Refactored by RIdiom

Line removed!



Example
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Code Refactored by GPT-3.5



Example
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Code Refactored by GPT-3.5

Expression moved to condition!



RQ3: Accuracy of the Neural Model
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Fine-tuned CodeT5 with the following differences from LExecutor:
• Predicts values for indexing operations;
• Larger and diverse training dataset.

LExecutor Accuracy (coarse-grained): 
88.1%



RQ4: Robustness and Coverage
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