
ChangeGuard: Validating Code Changes
via Pairwise Learning-Guided Execution

Lars Gröninger, Beatriz Souza, and Michael Pradel

Software is Continuously Evolving

New Features Refactoring

Bug Fixes Optimization

2

Software is Continuously Evolving

New Features Refactoring

 Bug Fixes Optimization

3

Should not change
the semantics!

4

Motivating Example

https://github.com/scrapy/scrapy/commit/694c6d3d

5

Motivating Example

https://github.com/scrapy/scrapy/commit/694c6d3d

Semantics changes if
request.meta.get('max_retry_times')
returns 0

6

Motivating Example

https://github.com/scrapy/scrapy/commit/49c5afc5

How to Find Semantics-Breaking Changes?

7

Old Code New Code

Compare

behavior

How to Find Semantics-Breaking Changes?

8

Old Code New Code

Compare

Executing is not always easy!

behavior

9

FSE'23

Learning-guided approach for executing arbitrary code snippets

• Predict missing values with neural model

• Inject values into the execution

Example of Incomplete Code

Missing variable
Missing function

Missing variable

Missing import
and attribute

10LExecutor: Learning-Guided Execution, FSE'23

LExecuting the Incomplete Code

Non-empty list

11

Function that returns True

Non-empty string

Object with a method

LExecutor: Learning-Guided Execution, FSE'23

ChangeGuard

Pairwise Learning-guided approach for validating code changes
• Key idea is to execute two versions of a code snippet side-by-side,

while predicting and injecting any missing values into the
execution.

12

Overview of ChangeGuard

13

Overview of ChangeGuard

14

Pairwise Learning-Guided Execution

• Merge f_old and f_new into Comparison Program

15

def f_old():
 # old code

def f_new():
new code

f_old()
f_new()

Code to compare behavior

Pairwise Learning-Guided Execution

• Predict diverse and project-specific values (!= LExecutor)

16

Pairwise Learning-Guided Execution

• Ensure consistency and non-interference

17

def f_old():
 ages = data.ages
 data.ages.append(100)

 …
def f_new():

ages = data.ages
 …
f_old()
f_new()

Code to compare behavior

Consistency map with deep-copies:
data.ages → ([23, 42], deepcopy([23, 42]))

Pairwise Learning-Guided Execution

More details in the paper:
• Handling Calls to External Functions
• Handling Indexing Operations

18

Overview of ChangeGuard

19

Compare Execution Behavior

• Repeat pairwise learning-guided execution (k = 300)
• After each execution of f_old and f_new compare:

- Argument and return values
- Output written to console
- Called functions
- Raised exceptions

20

Overview of ChangeGuard

21

Any behavior difference Otherwise

Changed lines not reached

Evaluation

• RQ1: Effectiveness
• RQ2: Comparison with Regression Testing
• RQ3: Accuracy of the Neural Model
• RQ4: Robustness and Coverage
• RQ5: Efficiency

22

Evaluation

23
"refactor", "simplify", "cleanup", "optimize"

Evaluation

24

224 single function changes

Evaluation

25

165 changes
(expected to be semantics-preserving)

1. RIdiom: Making Python Code Idiomatic by Automatic Refactoring Non-Idiomatic Python Code with Pythonic Idioms (FSE’22)

1

Evaluation

26

GPT-3.5: 187 changes
GPT-4: 258 changes

Prompt: "Improve code quality while preserving behavior"

RQ1: Effectiveness on Manually Annotated Changes

27

Precision: 77.1%

Recall: 69.5%

Accuracy: 78.1%

RQ1: Effectiveness on Manually Annotated Changes

28

Precision: 77.1%

Recall: 69.5%

Accuracy: 78.1%

-> ChangeGuard's predictions are correct for the majority of the code changes!

RQ1: Effectiveness on Changes by and

29

RQ1: Effectiveness on Changes by and

30

Bug in RIdiom

RQ1: Effectiveness on Changes by and

31

Bug in RIdiom

30 random cases
(per model)

GPT-3.5: 21 changing
GPT-4: 16 changing

RQ1: Effectiveness on Changes by and

32

Bug in RIdiom

30 random cases
(per model)

GPT-3.5: 21 changing
GPT-4: 16 changing

-> LLMs often fail to improve the code while
preserving its semantics;

-> ChangeGuard is effective to identify such
semantics-breaking code changes!

Example

33

Code Refactored by GPT-4

Example

34

Code Refactored by GPT-4
Behavior changes for args = [], [], [...]

RQ2: Comparison with Existing Regression Tests

35

No test results
Precision: 83.3%

Recall: 7.6%

Accuracy: 47.5%

RQ2: Comparison with Existing Regression Tests

36

No test results
Precision: 83.3%

Recall: 7.6%

Accuracy: 47.5%
-> ChangeGuard is more effective than the existing regression tests!

RQ5: Efficiency

37

• Instrumentation: 1.15 seconds
• First execution: 1.67 seconds
• Extra executions: 1.01 seconds

Executions to reach a conclusion

RQ5: Efficiency

38

• Instrumentation: 1.15 seconds
• First execution: 1.67 seconds
• Extra executions: 1.01 seconds

Executions to reach a conclusion

-> Reducing the number of executions,
ChangeGuard becomes more efficient
for a small reduction in recall!

39

Example

40

Code Refactored by RIdiom

Example

41

Code Refactored by RIdiom

Line removed!

Example

42

Code Refactored by GPT-3.5

Example

43

Code Refactored by GPT-3.5

Expression moved to condition!

RQ3: Accuracy of the Neural Model

44

Fine-tuned CodeT5 with the following differences from LExecutor:
• Predicts values for indexing operations;
• Larger and diverse training dataset.

LExecutor Accuracy (coarse-grained):
88.1%

RQ4: Robustness and Coverage

45

	Slide 1: ChangeGuard: Validating Code Changes via Pairwise Learning-Guided Execution
	Slide 2: Software is Continuously Evolving
	Slide 3: Software is Continuously Evolving
	Slide 4: Motivating Example
	Slide 5: Motivating Example
	Slide 6: Motivating Example
	Slide 7: How to Find Semantics-Breaking Changes?
	Slide 8: How to Find Semantics-Breaking Changes?
	Slide 9
	Slide 10: Example of Incomplete Code
	Slide 11: LExecuting the Incomplete Code
	Slide 12: ChangeGuard
	Slide 13: Overview of ChangeGuard
	Slide 14: Overview of ChangeGuard
	Slide 15: Pairwise Learning-Guided Execution
	Slide 16: Pairwise Learning-Guided Execution
	Slide 17: Pairwise Learning-Guided Execution
	Slide 18: Pairwise Learning-Guided Execution
	Slide 19: Overview of ChangeGuard
	Slide 20: Compare Execution Behavior
	Slide 21: Overview of ChangeGuard
	Slide 22: Evaluation
	Slide 23: Evaluation
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Evaluation
	Slide 27: RQ1: Effectiveness on Manually Annotated Changes
	Slide 28: RQ1: Effectiveness on Manually Annotated Changes
	Slide 29: RQ1: Effectiveness on Changes by and
	Slide 30: RQ1: Effectiveness on Changes by and
	Slide 31: RQ1: Effectiveness on Changes by and
	Slide 32: RQ1: Effectiveness on Changes by and
	Slide 33: Example
	Slide 34: Example
	Slide 35: RQ2: Comparison with Existing Regression Tests
	Slide 36: RQ2: Comparison with Existing Regression Tests
	Slide 37: RQ5: Efficiency
	Slide 38: RQ5: Efficiency
	Slide 39
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: RQ3: Accuracy of the Neural Model
	Slide 45: RQ4: Robustness and Coverage

